Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices

被引:368
作者
Kempa, Thomas J. [2 ]
Tian, Bozhi [2 ]
Kim, Dong Rip [1 ]
Hu, Jinsong [2 ]
Zheng, Xiaolin [1 ]
Lieber, Charles M. [2 ,3 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1021/nl8023438
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowires represent a promising class of materials for exploring new concepts in solar energy conversion. Here we report the first experimental realization of axial modulation-doped p-i-n and tandem p-i-n(+)-p(+)-i-n silicon nanowire (SiNW) photovoltaic elements. Scanning electron microscopy images of selectively etched nanowires demonstrate excellent synthetic control over doping and lengths of distinct regions in the diode structures. Current-voltage (I-V characteristics reveal clear and reproducible diode characteristics for the p-i-n and p-n SiNW devices. Under simulated one-sun solar conditions (AM 1.5G optimized p-i-n SiNW devices exhibited an open circuit voltage (V-oc) of 0.29 V, a maximum short-circuit current density of 3.5 mA/cm(2), and a maximum efficiency of 0.5%. The response of the short-circuit current versus V-oc under varying illumination intensities shows that the diode quality factor is improved from n = 1.78 to n = 1.28 by insertion of the i-type SiNW segment. The temperature dependence of V-oc scales as -2.97 mV/K and extrapolates to the crystalline Si band gap at 0 K, which is in excellent agreement with bulk properties. Finally, a novel single SiNW tandem solar cell consisting of synthetic integration of two photovoltaic elements with an overall p-i-n(+)-p(+)-i-n structure was prepared and shown to exhibit a V-oc that is on average 57% larger than that of the single p-i-n device. Fundamental studies of such well-defined nanowire photovoltaics will enable their intrinsic performance limits to be defined.
引用
收藏
页码:3456 / 3460
页数:5
相关论文
共 17 条
[1]   Structural, optical and electrical characterizations of μc-Si:H films deposited by PECVD [J].
Ambrosone, G ;
Coscia, U ;
Murri, R ;
Pinto, N ;
Ficcadenti, M ;
Morresi, L .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :375-386
[2]  
Gray J. L., 2003, HDB PHOTOVOLTAIC SCI, DOI 10.1002/0470014008
[3]   General temperature dependence of solar cell performance and implications for device modelling [J].
Green, MA .
PROGRESS IN PHOTOVOLTAICS, 2003, 11 (05) :333-340
[4]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[5]   Hybrid nanorod-polymer solar cells [J].
Huynh, WU ;
Dittmer, JJ ;
Alivisatos, AP .
SCIENCE, 2002, 295 (5564) :2425-2427
[6]   Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells -: art. no. 114302 [J].
Kayes, BM ;
Atwater, HA ;
Lewis, NS .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[7]   Photovoltaic measurements in single-nanowire silicon solar cells [J].
Kelzenberg, Michael D. ;
Turner-Evans, Daniel B. ;
Kayes, Brendan M. ;
Filler, Michael A. ;
Putnam, Morgan C. ;
Lewis, Nathan S. ;
Atwater, Harry A. .
NANO LETTERS, 2008, 8 (02) :710-714
[8]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[9]   Solar cells based on quantum dots:: Multiple exciton generation and intermediate bands [J].
Luque, Antonio ;
Marti, Antonio ;
Nozik, Arthur J. .
MRS BULLETIN, 2007, 32 (03) :236-241
[10]  
Sze S M., 2004, Physics of Semiconductor Device