Perfect Italian domination in graphs: Complexity and algorithms

被引:6
作者
Pradhan, D. [1 ]
Banerjee, S. [1 ]
Liu, Jia-Bao [2 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Math & Comp, Dhanbad, Bihar, India
[2] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
关键词
Domination; Italian domination; Perfect Italian domination; Polynomial time algorithm; NP-complete; ROMAN DOMINATION;
D O I
10.1016/j.dam.2021.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An Italian dominating function on a simple undirected graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that for each vertex v with f (v) = 0, Sigma(u epsilon NG(v)) f(u) >= 2. An Italian dominating function f on G is called a perfect Italian dominating function on G if for each vertex v with f (v) = 0, Sigma(u epsilon NG(v)) f (u) = 2. The weight of a function f on a graph G, denoted by w(f), is the sum Sigma(u epsilon V(G)) f (v). For a simple undirected graph G, Min-PIDF is the problem of finding the minimum weight of a perfect Italian dominating function on G. First, we discuss the complexity difference between Min-PIDF and the problem of finding the minimum weight of an Italian dominating function. We then establish the NP-completeness of the decision version of Min-PIDF in chordal graphs and investigate the hardness of approximation of Min-PIDF in general graphs. Finally, we present linear time algorithms for computing the minimum weight of a perfect Italian dominating function in block graphs and series-parallel graphs. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 295
页数:25
相关论文
共 30 条
[1]   Outer independent double Roman domination [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
[2]   Signed Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Henning, Michael A. ;
Loewenstein, Christian ;
Zhao, Yancai ;
Samodivkin, Vladimir .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) :241-255
[3]   Outer independent Roman dominating functions in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Samodivkin, Vladimir .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) :2547-2557
[4]  
Aho A.V., 1974, DESIGN ANAL COMPUTER
[5]  
Ausiello G., 1999, COMPLEXITY APPROXIMA
[6]   Perfect Italian domination in cographs [J].
Banerjee, S. ;
Henning, Michael A. ;
Pradhan, D. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[7]   Perfect Roman domination in graphs [J].
Banerjee, S. ;
Keil, J. Mark ;
Pradhan, D. .
THEORETICAL COMPUTER SCIENCE, 2019, 796 :1-21
[8]   Algorithmic results on double Roman domination in graphs [J].
Banerjee, S. ;
Henning, Michael A. ;
Pradhan, D. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) :90-114
[9]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[10]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28