Electronic structure of Li2O2 {0001} surfaces

被引:77
|
作者
Radin, Maxwell D. [4 ]
Tian, Feng [3 ]
Siegel, Donald J. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Michigan Energy Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; LITHIUM; BATTERY; DISCHARGE; TRANSITION;
D O I
10.1007/s10853-012-6552-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The surface properties of the Li2O2 discharge phase are expected to impact strongly the capacity, rate capability, and rechargeability of Li-oxygen batteries. Prior calculations have suggested that the presence of half-metallic surface states in Li2O2 may mitigate electrical passivation resulting from the growth of Li2O2, which is a bulk insulator. Here we revisit the electronic structure of bulk Li2O2 and the dominant Li2O2 {0001} surface by comparing results obtained with the PBE GGA functional, the HSE06 hybrid functional, and quasiparticle GW methods. Our results suggest that the bulk band gap lies between the value predicted by the G(0)W(0) method, 5.15 eV, and the value predicted by the self-consistent quasiparticle GW (scGW) approximation, 6.37 eV. The PBE, HSE06, and scGW methods agree that the most stable surface, an oxygen-rich {0001} termination, is indeed half-metallic. This result supports the notion that the electronic structure of surfaces may play an important role in understanding performance limitations in Li-oxygen batteries.
引用
收藏
页码:7564 / 7570
页数:7
相关论文
共 50 条
  • [21] The thermodynamic properties of lithium peroxide, Li2O2
    Wu, H. Y.
    Zhang, H.
    Cheng, X. L.
    Cai, L. C.
    PHYSICS LETTERS A, 2006, 360 (02) : 352 - 356
  • [22] Homogeneous nucleation of Li2O2 under Li-O2 battery discharge
    Zakharchenko, Tatiana K.
    Sergeev, Artem V.
    D. Bashkirov, Alexander
    Neklyudova, Polina
    Cervellino, Antonio
    Itkis, Daniil M.
    Yashina, Lada V.
    NANOSCALE, 2020, 12 (07) : 4591 - 4601
  • [23] Rechargeable Li2O2 electrode for lithium batteries
    Ogasawara, T
    Débart, A
    Holzapfel, M
    Novak, P
    Bruce, PG
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) : 1390 - 1393
  • [24] Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries
    Qinghua Cui
    Yelong Zhang
    Shunchao Ma
    Zhangquan Peng
    ScienceBulletin, 2015, 60 (14) : 1227 - 1234
  • [25] Tunneling and Polaron Charge Transport through Li2O2 in Li-O2 Batteries
    Luntz, A. C.
    Viswanathan, V.
    Voss, J.
    Varley, J. B.
    Norskov, J. K.
    Scheffler, R.
    Speidel, A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (20): : 3494 - 3499
  • [26] Enhanced Charge Transport in Amorphous Li2O2
    Tian, Feng
    Radin, Maxwell D.
    Siegel, Donald J.
    CHEMISTRY OF MATERIALS, 2014, 26 (09) : 2952 - 2959
  • [27] Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study
    Younesi, Reza
    Hahlin, Maria
    Bjorefors, Fredrik
    Johansson, Patrik
    Edstrom, Kristina
    CHEMISTRY OF MATERIALS, 2013, 25 (01) : 77 - 84
  • [28] Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries
    Horstmann, Birger
    Gallant, Betar
    Mitchell, Robert
    Bessler, Wolfgang G.
    Shao-Horn, Yang
    Bazant, Martin Z.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (24): : 4217 - 4222
  • [29] Evolution of Li2O2 Growth and Its Effect on Kinetics of Li-O2 Batteries
    Xia, Chun
    Waletzko, Michael
    Chen, Limei
    Peppler, Klaus
    Klar, Peter J.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) : 12083 - 12092
  • [30] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Daniela M.Josepetti
    Bianca P.Sousa
    Simone A.J.Rodrigues
    Renato G.Freitas
    Gustavo Doubek
    Journal of Energy Chemistry, 2024, 88 (01) : 223 - 231