Self-assembled squalenoyl-cytarabine nanostructures as a potent nanomedicine for treatment of leukemic diseases

被引:0
作者
Cosco, Donato [1 ]
Rocco, Flavio [2 ]
Ceruti, Maurizio [2 ]
Vono, Margherita [1 ]
Fresta, Massimo [1 ,3 ]
Paolino, Donatella [1 ,3 ]
机构
[1] Magna Graecia Univ Catanzaro, Dept Hlth Sci, I-88100 Catanzaro, Italy
[2] Dipartimento Sci & Tecnol Farmaco, Turin, Italy
[3] UOC Farm Osped Fdn Ric & Cura Tumori Tommaso Camp, Catanzaro, Italy
关键词
squalenoyl-cytarabine; self-assembly; antitumoral nanomedicine; leukemia; nanoaggregate; biodistribution; ACUTE MYELOID-LEUKEMIA; INTRATHECAL LIPOSOMAL CYTARABINE; IN-VIVO; ANTICANCER DRUGS; GEMCITABINE; RESISTANCE; BIODISTRIBUTION; EFFICACY; DELIVERY; TUMORS;
D O I
10.2147/IJN.S28114
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Background: In this investigation, the antileukemic activity of a new nanomedicine based on the conjugation of 1,1',2-tris-nor-squalenic acid with cytarabine (Ara-C) was evaluated. Methods: Squalenoyl-Ara-C conjugate (Sq-Ara-C) self-assembled nanosystems were obtained by the nanoprecipitation method and characterized in vitro and in vivo. Results: This new nanomedicine, which had a mean diameter of approximately 150 nm, improved the in vitro antitumoral activity of Ara-C in different cancer cell lines (L1210, K562, and MCF-7). Sq-Ara-C nanomedicine allowed reduction of the IC50 value with respect to the free drug and was also active against drug-resistant leukemic cells (L1210R). A noticeable increase in the survival rate of mice with aggressive metastatic L1210R leukemia was observed after treatment with Sq-Ara-C (50 mg/kg) as compared with the free active compound (100 mg/kg). Finally, evaluation of the biodistribution and pharmacokinetic profiles of the drug demonstrated that these nanoaggregates preferentially localized to the liver and spleen, and protected the drug from physiological metabolism. Conclusion: Squalenoylation of cytarabine offers several pharmacological benefits both in vitro and in vivo.
引用
收藏
页码:2535 / 2546
页数:12
相关论文
共 35 条
[1]   Liposomal cytarabine for leukemic and lymphomatous meningitis: recent developments [J].
Benesch, Martin ;
Urban, Christian .
EXPERT OPINION ON PHARMACOTHERAPY, 2008, 9 (02) :301-309
[2]   Safety and toxicity of intrathecal liposomal cytarabine (Depocyte) in children and adolescents with recurrent or refractory brain tumors: a multi-institutional retrospective study [J].
Benesch, Martin ;
Siegler, Nele ;
von Hoff, Katja ;
Lassay, Lisa ;
Kropshofer, Gabrielle ;
Mueller, Hermann ;
Sommer, Constanze ;
Rutkowski, Stefan ;
Fleischhack, Gudrun ;
Urban, Christian .
ANTI-CANCER DRUGS, 2009, 20 (09) :794-799
[3]   Decreased resistance to gemcitabine (2′,2′-difluorodeoxycitidine) of cytosine arabinoside-resistant myeloblastic murine and rat leukemia cell lines:: Role of altered activity and substrate specificity of deoxycytidine kinase [J].
Bergman, AM ;
Pinedo, HM ;
Jongsma, APM ;
Brouwer, M ;
van Haperen, VWTR ;
Veerman, G ;
Leyva, A ;
Eriksson, S ;
Peters, GJ .
BIOCHEMICAL PHARMACOLOGY, 1999, 57 (04) :397-406
[4]   Transmembrane diffusion of gemcitabine by a nanoparticulate squalenoyl prodrug: An original drug delivery pathway [J].
Bildstein, L. ;
Dubernet, C. ;
Marsaud, V. ;
Chacun, H. ;
Nicolas, V. ;
Gueutin, C. ;
Sarasin, A. ;
Benech, H. ;
Lepetre-Mouelhi, S. ;
Desmaele, D. ;
Couvreur, P. .
JOURNAL OF CONTROLLED RELEASE, 2010, 147 (02) :163-170
[5]   Molecular identification of the equilibrative NBMPR-sensitive (es) nucleoside transporter and demonstration of an equilibrative NBMPR-insensitive (ei) transport activity in human erythroleukemia (K562) cells [J].
Boleti, H ;
Coe, IR ;
Baldwin, SA ;
Young, JD ;
Cass, CE .
NEUROPHARMACOLOGY, 1997, 36 (09) :1167-1179
[6]   Characterization of lipophilic gemcitabine prodrug - Liposomal membrane interaction by differential scanning calorimetry [J].
Castelli, Francesco ;
Sarpietro, Maria Grazia ;
Ceruti, Maurizio ;
Rocco, Flavio ;
Cattel, Luigi .
MOLECULAR PHARMACEUTICS, 2006, 3 (06) :737-744
[7]   Cytotoxic effects of a novel pyrazolopyrimidine derivative entrapped in liposomes in anaplastic thyroid cancer cells in vitro and in xenograft tumors in vivo [J].
Celano, M. ;
Schenone, S. ;
Cosco, D. ;
Navarra, M. ;
Puxeddu, E. ;
Racanicchi, L. ;
Brullo, C. ;
Varano, E. ;
Alcaro, S. ;
Ferretti, E. ;
Botta, G. ;
Filetti, S. ;
Fresta, M. ;
Botta, M. ;
Russo, D. .
ENDOCRINE-RELATED CANCER, 2008, 15 (02) :499-510
[8]   Synthesis and biological activity of new iodoacetamide derivatives on mutants of squalene-hopene cyclase [J].
Ceruti, M ;
Balliano, G ;
Rocco, F ;
Lenhart, A ;
Schulz, GE ;
Castelli, F ;
Milla, P .
LIPIDS, 2005, 40 (07) :729-735
[9]   Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue [J].
Couvreur, Patrick ;
Reddy, L. Harivardhan ;
Mangenot, Sephanie ;
Poupaert, Jacques H. ;
Desmaele, Didier ;
Lepetre-Mouelhi, Sinda ;
Pili, Barbara ;
Bourgaux, Claudie ;
Amenitsch, H. ;
Ollivon, Michel .
SMALL, 2008, 4 (02) :247-253
[10]   Squalenoyl nanomedicines as potential therapeutics [J].
Couvreur, Patrick ;
Stella, Barbara ;
Reddy, L. Harivardhan ;
Hillaireau, Herve ;
Dubernet, Catherine ;
Desmaele, Didier ;
Lepetre-Mouelhi, Sinda ;
Rocco, Flavio ;
Dereuddre-Bosquet, Nathalie ;
Clayette, Pascal ;
Rosilio, Veronique ;
Marsaud, Veronique ;
Renoir, Jack-Michel ;
Cattel, Luigi .
NANO LETTERS, 2006, 6 (11) :2544-2548