Modules to teach parallel and distributed computing using MPI for Python']Python and Disco

被引:2
|
作者
Ortiz-Ubarri, Jose [1 ]
Arce-Nazario, Rafael [1 ]
Orozco, Edusmildo [1 ]
机构
[1] Univ Puerto Rico, Dept Comp Sci, Rio Piedras, PR 00931 USA
来源
2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW) | 2016年
关键词
parallel computing; mpi; mapreduce; master worker;
D O I
10.1109/IPDPSW.2016.204
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The ability to design effective solutions using parallel processing should be a required competency for every computing student. However, teaching parallel concepts is sometimes challenging and costly, specially at early stages of a computer science degree. For such reasons we present a set of modules to teach parallel computing paradigms using as examples problems that are computationally intensive, but easy to understand and can be easily implemented using the Python parallelization libraries MPI for Python and Disco.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [21] Using Python']Python Modules in Real-Time Plasma Systems for Fusion
    Ferron, Nicolo
    Manduchi, Gabriele
    SENSORS, 2022, 22 (18)
  • [22] Modeling and computing magnetocaloric systems using the Python']Python framework heatrapy
    Silva, D. J.
    Amaral, J. S.
    Amaral, V. S.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 106 : 278 - 282
  • [23] Scalable Multimedia Content Analysis on Parallel Platforms Using Python']Python
    Gonina, Ekaterina
    Friedland, Gerald
    Battenberg, Eric
    Koanantakool, Penporn
    Driscoll, Michael
    Georganas, Evangelos
    Keutzer, Kurt
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2014, 10 (02)
  • [24] Design of Distributed Parallel Computing Using by MapReduce/MPI Technology
    Akhmed-Zaki, Darkhan
    Danaev, Nargozy
    Matkerim, Bazargul
    Bektemessov, Amanzhol
    PARALLEL COMPUTING TECHNOLOGIES (PACT 2013), 2013, 7979 : 139 - 148
  • [25] Performance Evaluation of Python']Python Parallel Programming Models: Charm4Py and mpi4py
    Fink, Zane
    Liu, Simeng
    Choi, Jaemin
    Diener, Matthias
    Kale, Laxmikant, V
    PROCEEDINGS OF SIXTH INTERNATIONAL IEEE WORKSHOP ON EXTREME SCALE PROGRAMMING MODELS AND MIDDLEWARE (ESPM2 2021), 2021, : 38 - 44
  • [26] HPC parallel implementation combining NEST Simulator and Python modules
    Simona Nedelcheva
    Sofiya Ivanovska
    Mariya Durchova
    Petia Koprinkova-Hristova
    Cluster Computing, 2022, 25 : 1637 - 1644
  • [27] FracAbut: A python']python toolbox for computing fracture stratigraphy using interface impedance
    Soro, Paul Joseph Namongo
    Lamarche, Juliette
    Viseur, Sophie
    Richard, Pascal
    Messaadi, Fateh
    COMPUTERS & GEOSCIENCES, 2024, 190
  • [28] The Privacy Preservation of Patients' Health Records using Soft Computing in Python']Python
    Aggarwal, Sachin
    Kumar, Anil
    Kumar, Ravinder
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 156 - 160
  • [29] Performance and Energy Efficiency of CUDA and OpenCL for GPU Computing Using Python']Python
    Holm, Havard H.
    Brodtkorb, Andre R.
    Saetra, Martin L.
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 593 - 604
  • [30] Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python']Python
    Skorpil, Vladislav
    Oujezsky, Vaclav
    SENSORS, 2022, 22 (06)