Continuous family of invariant subspaces for R-diagonal operators

被引:24
作者
Sniady, P
Speicher, R
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
D O I
10.1007/s002220100166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every R-diagonal operator x has a continuous family of invariant subspaces relative to the von Neumann algebra generated by x. This allows us to find the Brown measure of x and to find a new conceptual proof that Voiculescu's S-transform is multiplicative. Our considerations base on a new concept of R-diagonality with amalgamation, for which we give several equivalent characterizations.
引用
收藏
页码:329 / 363
页数:35
相关论文
共 33 条
[1]   FREE-PRODUCTS OF C-STAR-ALGEBRAS [J].
AVITZOUR, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 271 (02) :423-435
[2]  
BIANE P, IN PRESS C MATH
[3]  
Brown L. G., 1986, PITMAN RES NOTES MAT, V123, P1
[4]  
DYKEMA K, IN PRESS GEOM FUNCT
[5]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[6]   Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras [J].
Haagerup, U ;
Larsen, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) :331-367
[7]  
Haagerup U., 1997, FREE PROBABILITY THE, P127
[8]  
Hiai Fumio, MATH SURVEYS MONOGRA, V77
[9]   Combinatorics of free cumulants [J].
Krawczyk, B ;
Speicher, R .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 90 (02) :267-292
[10]  
Kreweras G., 1972, Discrete Math., V1, P333