Ion-Exchanging Graphenic Nanochannels for Macroscopic Osmotic Energy Harvesting

被引:5
作者
Nagar, Ankit [1 ,2 ]
Islam, Md Rabiul [3 ]
Joshua, Kartheek [3 ]
Gupte, Tanvi [3 ]
Jana, Sourav Kanti [3 ]
Manna, Sujan [3 ]
Thomas, Tiju [4 ]
Pradeep, Thalappil [3 ,5 ]
机构
[1] DST Unit Nanosci, Dept Chem, Themat Unit Excellence, Chennai, India
[2] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
[3] Indian Inst Technol Madras, Dept Chem, DST Unit Nanosci, Themat Unit Excellence, Chennai 600036, India
[4] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
[5] Indian Inst Technol Madras, Chennai 600036, India
关键词
reduced graphene oxide; electrochemistry; ion transport; osmotic energy harvesting; pH sensitivity; HIGHLY EFFICIENT; ATOMIC CHARGES; GRAPHITE OXIDE; TRANSPORT; MEMBRANES; POWER; GENERATION; HYDRATION; OSMOSIS;
D O I
10.1021/acssuschemeng.2c04138
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Gibbs free energy difference between seawater and river water can be tapped by selective ion transport across charged nanochannels, referred to as reverse electrodialysis (RED). However, existing single pore and micro/nanofluidic RED systems have shown poor prospects for scalability and practical implementation. Herein, we present a macroscopic RED system, utilizing a cation-selective membrane or an anion-selective membrane. The membranes comprise reduced graphene oxide (rGO) nanosheets decorated uniformly with TiO2 nanoparticles. The nanosheets are covalently functionalized with polystyrene (PS) and subsequently linked to sulfonate or quaternary amine functional groups to obtain cation and anion selectivity, respectively. The membranes show excellent ion transport properties along with high power densities demonstrated under artificial salinity gradients. The cation-exchange membrane (CEM) delivered a power density of 448.7 mW m-2 under a 500-fold concentration gradient, while the anion-exchange membrane (AEM) produced a substantial power output of 177.8 mW m-2 under a similar gradient. The efficiencies ranged from 10.6% to 42.3% for CEM and from 9.7% to 46.1% in the case of AEM. Testing under varying pH conditions revealed higher power output under acidic conditions and substantial power output across the entire pH range, rendering them practically viable for sustainable energy harvesting in acidic and alkaline wastewaters.
引用
收藏
页码:15082 / 15093
页数:12
相关论文
共 50 条
  • [1] Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels
    Laucirica, Gregorio
    Albesa, Alberto G.
    Toimil-Molares, Maria Eugenia
    Trautmann, Christina
    Marmisolle, Waldemar A.
    Azzaroni, Omar
    NANO ENERGY, 2020, 71
  • [2] Tree-inspired lignin microrods-based composite heterogeneous nanochannels for ion transport and osmotic energy harvesting
    Cheng, Peng
    Chen, Sheng
    Li, Xin
    Xu, Yanglei
    Xu, Feng
    Ragauskas, Arthur J.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 255
  • [3] Nanochannels and nanoporous membranes in reverse electrodialysis for harvesting osmotic energy
    Fang, Zhenghui
    Dong, Yuhua
    Guo, Zaichao
    Zhao, Zhuo
    Zhang, Zhenhua
    Liang, Zhihao
    Yao, Huijun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (12):
  • [4] Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting
    Bang, Ki Ryuk
    Kwon, Choah
    Lee, Ho
    Kim, Sangtae
    Cho, Eun Seon
    ACS NANO, 2023, 17 (11) : 10000 - 10009
  • [5] Meta-Aerogel Ion Motor for Nanofluid Osmotic Energy Harvesting
    Zhang, Feng
    Yu, Jianyong
    Si, Yang
    Ding, Bin
    ADVANCED MATERIALS, 2023, 35 (38)
  • [6] Nanochannels for low-grade energy harvesting
    Li, Zhong-Qiu
    Zhu, Guan-Long
    Mo, Ri-Jian
    Wu, Ming-Yang
    Ding, Xin-Lei
    Huang, Li-Qiu
    Xia, Xing-Hua
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [7] Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting
    Wang, Peifang
    Tao, Weixiang
    Zhou, Tianhong
    Wang, Jie
    Zhao, Chenrui
    Zhou, Gang
    Yamauchi, Yusuke
    ADVANCED MATERIALS, 2024, 36 (35)
  • [8] Light-driven directional ion transport for enhanced osmotic energy harvesting
    Xiao, Kai
    Giusto, Paolo
    Chen, Fengxiang
    Chen, Ruotian
    Heil, Tobias
    Cao, Shaowen
    Chen, Lu
    Fan, Fengtao
    Jiang, Lei
    NATIONAL SCIENCE REVIEW, 2021, 8 (08)
  • [9] Nanoengineered nanochannels for thermally ionic nanofluidic energy harvesting
    Van Toan, Nguyen
    Tuoi, Truong Thi Kim
    Inomata, Naoki
    Hasnan, Megat Muhammad Ikhsan Megat
    Toda, Masaya
    Voiculescu, Ioana
    Said, Suhana Mohd
    Ono, Takahito
    ENERGY CONVERSION AND MANAGEMENT, 2022, 264
  • [10] Highly Efficient Osmotic Energy Harvesting in Charged Boron-Nitride-Nanopore Membranes
    Pendse, Aaditya
    Cetindag, Semih
    Rehak, Pavel
    Behura, Sanjay
    Gao, Haiqi
    Ngoc Hoang Lan Nguyen
    Wang, Tongshuai
    Berry, Vikas
    Kral, Petr
    Shan, Jerry
    Kim, Sangil
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (15)