A Modified Mutation-Dissipation Binary Particle Swarm Optimization Algorithm and Its Application to WFGD Control

被引:0
作者
Li, Hongxing [1 ]
Wang, Ling [1 ,2 ]
Wang, Ling [1 ,2 ]
Zhen, LanLan [2 ,3 ]
Zhen, LanLan [2 ,3 ]
Huang, Ziyuan [3 ]
机构
[1] Bao Steel Co, Shanghai Bao Steel Power Plant, Shanghai, Peoples R China
[2] Shanghai Univ, Sch Mechatron & Automat, Shanghai 200041, Peoples R China
[3] Shanghai Univ Elect Power, Informat & Control Dept, Shanghai 200041, Peoples R China
来源
ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2 | 2008年
关键词
PSO; mutation; PID; dissipation operator;
D O I
10.1109/ISISE.2008.191
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The absorber slurry pH value control is very important in the limestone-gypsum wet flues gas desulphurization technology which is widely adopted in thermal power plant in China. As the simple PID control method can not get the satisfactory control performance because of the complexity of the absorber slurry pH value control, we propose a modified mutation-dissipation binary Particle Swarm Optimization (MDBPSO) algorithm and adopt it to optimize the PID controller parameters. The simulation results show MDBPSO algorithm have better optimization ability and can find the global optima effectively. By construct the proper fitness function of PID controller parameter optimization, MDBPSO algorithm can effectively find the optimal PID parameters, which make controller restrain the overshoot, quick response the change of pH value and achieve the ideal control performance of absorber slurry pH value.
引用
收藏
页码:258 / +
页数:2
相关论文
共 50 条
  • [1] An adaptive mutation-dissipation binary particle swarm optimisation for multidimensional knapsack problem
    Wang, Ling
    Wang, Xiu-ting
    Fei, Min-rui
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2009, 8 (04) : 259 - 269
  • [2] Binary Particle Swarm Optimization Algorithm with Mutation for Multiple Sequence Alignment
    Long, Hai-Xia
    Xu, Wen-Bo
    Sun, Jun
    RIVISTA DI BIOLOGIA-BIOLOGY FORUM, 2009, 102 (01): : 75 - 94
  • [3] Modified binary particle swarm optimization
    Lee, Sangwook
    Soak, Sangmoon
    Oh, Sanghoun
    Pedrycz, Witold
    Jeon, Moongu
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (09) : 1161 - 1166
  • [4] Modified binary particle swarm optimization
    Sangwook Lee
    Sangmoon Soak
    Sanghoun Oh
    Witold Pedrycz
    Moongu Jeon
    Progress in Natural Science, 2008, (09) : 1161 - 1166
  • [5] Determination of the PID Controller Parameters by Modified Binary Particle Swarm Optimization Algorithm
    Ma, Chengxi
    Qian, Lin
    Wang, Ling
    Menhas, Muhammad Ilyas
    Fei, Minrui
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 2689 - +
  • [6] A Modified Centre Particle Swarm Optimization Algorithm
    Zhang, Yanduo
    Zhu, Yunchang
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 6164 - 6167
  • [7] Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization
    Pashaer, Elnaz
    Pashaei, Elham
    Aydin, Nizamettin
    GENOMICS, 2019, 111 (04) : 669 - 686
  • [8] Modified particle swarm optimization algorithms based on topology and particle mutation
    Xu S.-C.
    Cai J.
    Cheng Y.
    Wang H.-X.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (02): : 419 - 428
  • [9] A modified particle swarm optimisation algorithm and its application in vehicle lightweight design
    Liu, Zhao
    Zhu, Ping
    Zhu, Chao
    Chen, Wei
    Yang, Ren-Jye
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2017, 73 (1-3) : 116 - 135
  • [10] A modified particle swarm optimisation algorithm and its application in vehicle lightweight design
    Liu Z.
    Zhu P.
    Zhu C.
    Chen W.
    Yang R.-J.
    Zhu, Ping (pzhu@sjtu.edu.cn), 2017, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (73) : 116 - 135