Comparison of refilling schemes in the free-surface lattice Boltzmann method

被引:2
作者
Schwarzmeier, Christoph [1 ]
Ruede, Ulrich [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Syst Simulat, Cauerstrasse 11, D-91058 Erlangen, Germany
[2] CERFACS, 42 Ave Gaspard Coriolis, F-31057 Toulouse 1, France
基金
欧盟地平线“2020”;
关键词
GRADS APPROXIMATION; FLUID; SIMULATIONS; FLOW;
D O I
10.1063/5.0131159
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Simulating mobile liquid-gas interfaces with the free-surface lattice Boltzmann method (FSLBM) requires frequent re-initialization of fluid flow information in computational cells that convert from gas to liquid. The corresponding algorithm, here referred to as the refilling scheme, is crucial for the successful application of the FSLBM in terms of accuracy and numerical stability. This study compares five refilling schemes that extract information from the surrounding liquid and interface cells by averaging, extrapolating, or assuming one of the three different equilibrium states. Six numerical experiments were performed, covering a broad spectrum of possible scenarios. These include a standing gravity wave, a rectangular and cylindrical dam break, a Taylor bubble, a drop impact into liquid, and a bubbly plane Poiseuille flow. In some simulations, the averaging, extrapolation, and one equilibrium-based scheme were numerically unstable. Overall, the results have shown that the simplest equilibrium-based scheme should be preferred in terms of numerical stability, computational cost, accuracy, and ease of implementation. (c) 2022 Author(s).
引用
收藏
页数:22
相关论文
共 43 条
[1]   Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method [J].
Ammer, Regina ;
Markl, Matthias ;
Ljungblad, Ulric ;
Koerner, Carolin ;
Ruede, Ulrich .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) :318-330
[2]   Free surface lattice Boltzmann with enhanced bubble model [J].
Anderl, Daniela ;
Bogner, Simon ;
Rauh, Cornelia ;
Ruede, Ulrich ;
Delgado, Antonio .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) :331-339
[3]  
Batchelor D., 2000, Chromophobia
[4]   WALBERLA: A block-structured high-performance framework for multiphysics simulations [J].
Bauer, Martin ;
Eibl, Sebastian ;
Godenschwager, Christian ;
Kohl, Nils ;
Kuron, Michael ;
Rettinger, Christoph ;
Schornbaum, Florian ;
Schwarzmeier, Christoph ;
Thoennes, Dominik ;
Koestler, Harald ;
Ruede, Ulrich .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :478-501
[5]   Truncation errors of the D3Q19 lattice model for the lattice Boltzmann method [J].
Bauer, Martin ;
Silva, Goncalo ;
Ruede, Ulrich .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
[6]  
Bogner S., 2017, THESIS FRIEDRICH ALE
[7]   Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method [J].
Bogner, Simon ;
Ruede, Ulrich ;
Harting, Jens .
PHYSICAL REVIEW E, 2016, 93 (04)
[8]   Boundary conditions for free interfaces with the lattice Boltzmann method [J].
Bogner, Simon ;
Ammer, Regina ;
Ruede, Ulrich .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 :1-12
[9]   The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results [J].
Bugg, JD ;
Saad, GA .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2002, 28 (05) :791-803
[10]   Grad's approximation for missing data in lattice Boltzmann simulations [J].
Chikatamarla, SS ;
Ansumali, S ;
Karlin, IV .
EUROPHYSICS LETTERS, 2006, 74 (02) :215-221