On the Spectral Clustering for Dynamic Data

被引:3
作者
Peluffo-Ordonez, D. H. [1 ]
Alvarado-Perez, J. C. [2 ]
Castro-Ospina, A. E. [3 ]
机构
[1] Univ Cooperat Colombia Pasto, Narino, Colombia
[2] Univ Salamanca, E-37008 Salamanca, Spain
[3] Inst Tecnol Metropolitano, Res Ctr, Medellin, Colombia
来源
BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II | 2015年 / 9108卷
关键词
Dynamic data; Kernels; Spectral clustering; OF-SAMPLE EXTENSIONS; FORMULATION; CUTS;
D O I
10.1007/978-3-319-18833-1_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering has shown to be a powerful technique for grouping and/or rank data as well as a proper alternative for unlabeled problems. Particularly, it is a suitable alternative when dealing with pattern recognition problems involving highly hardly separable classes. Due to its versatility, applicability and feasibility, this clustering technique results appealing for many applications. Nevertheless, conventional spectral clustering approaches lack the ability to process dynamic or time-varying data. Within a spectral framework, this work presents an overview of clustering techniques as well as their extensions to dynamic data analysis.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 42 条
  • [1] Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (02) : 335 - 347
  • [2] Alzate C, 2006, IEEE IJCNN, P138
  • [3] Sparse Kernel Models for Spectral Clustering Using the Incomplete Cholesky Decomposition
    Alzate, Carlos
    Suykens, Johan A. K.
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3556 - 3563
  • [4] Anh B.T., 2007, J APPL MATH
  • [5] [Anonymous], 2007, P PAIR WORKSH 21 AAA
  • [6] [Anonymous], AUTOMATIC SPEECH SPE
  • [7] [Anonymous], P INT C MACH LEARN I
  • [8] Bach FR, 2006, J MACH LEARN RES, V7, P1963
  • [9] Baker C.T.H., 1977, The numerical treatment of integral equations, V13
  • [10] Bengio Y, 2004, ADV NEUR IN, V16, P177