Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

被引:109
作者
Wen, Y. R. [1 ]
Li, Y. P. [2 ]
Hirata, A. [1 ]
Zhang, Y. [2 ]
Fujita, T. [1 ]
Furuhara, T. [2 ]
Liu, C. T. [3 ]
Chiba, A. [2 ]
Chen, M. W. [1 ,4 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[3] City Univ Hong Kong, MBE Dept, Ctr Adv Struct Mat, Kowloon, Hong Kong, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China
关键词
Fe-Cu alloy; Precipitation strengthening; Alloying effect; Scanning transmission electron microscopy; Atom probe tomography; FE-CU; ATOM-PROBE; TEMPORAL EVOLUTION; STEEL; COPPER; NI; DIFFUSION; IRON; DECOMPOSITION; NUCLEATION;
D O I
10.1016/j.actamat.2013.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe-Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe-Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core-shell nanoprecipitates with a Cu-rich core and a B2 Ni-Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core-shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe-Cu alloys. Reinforcement of the B2 Ni-Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core-shell nanoprecipitates. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7726 / 7740
页数:15
相关论文
共 35 条
[1]   DIFFUSION OF COPPER IN IRON [J].
ANAND, MS ;
AGARWALA, RP .
JOURNAL OF APPLIED PHYSICS, 1966, 37 (11) :4248-&
[2]   SELF DIFFUSION IN IRON [J].
BUFFINGTON, FS ;
HIRANO, K ;
COHEN, M .
ACTA METALLURGICA, 1961, 9 (05) :434-439
[3]  
Cahn RW., 1996, PHYS METALLURGY
[4]   Complex precipitation pathways in multicomponent alloys [J].
Clouet, Emmanuel ;
Lae, Ludovic ;
Epicier, Thierry ;
Lefebvre, Williams ;
Nastar, Maylise ;
Deschamps, Alexis .
NATURE MATERIALS, 2006, 5 (06) :482-488
[5]   Origin of copper precipitation strengthening in steel revisite [J].
Fine, ME ;
Isheim, D .
SCRIPTA MATERIALIA, 2005, 53 (01) :115-118
[6]   FIM-ATOM PROBE STUDY OF PRECIPITATION OF COPPER FROM IRON-1.4 AT PCT COPPER .2. ATOM PROBE ANALYSES [J].
GOODMAN, SR ;
BRENNER, SS ;
LOW, JR .
METALLURGICAL TRANSACTIONS, 1973, 4 (10) :2371-2378
[7]   Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel [J].
Hättestrand, M ;
Nilsson, JO ;
Stiller, K ;
Liu, P ;
Andersson, M .
ACTA MATERIALIA, 2004, 52 (04) :1023-1037
[8]   DIFFUSION OF NICKEL INTO IRON [J].
HIRANO, K ;
COHEN, M ;
AVERBACH, BL .
ACTA METALLURGICA, 1961, 9 (05) :440-445
[9]   Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM [J].
Hirata, A. ;
Fujita, T. ;
Liu, C. T. ;
Chen, M. W. .
ACTA MATERIALIA, 2012, 60 (16) :5686-5696
[10]  
Hirata A, 2011, NAT MATER, V10, P922, DOI [10.1038/NMAT3150, 10.1038/nmat3150]