Reconstruction algorithm of electrical impedance tomography for particle concentration distribution in suspension

被引:4
|
作者
Kim, MC [1 ]
Kim, KY
Kim, S
Lee, KJ
机构
[1] Cheju Natl Univ, Dept Chem Engn, Cheju 690756, South Korea
[2] Cheju Natl Univ, Dept Elect & Elect Engn, Cheju 690756, South Korea
[3] Cheju Natl Univ, Dept Nucl & Energy Engn, Cheju 690756, South Korea
基金
新加坡国家研究基金会;
关键词
particle concentration; electrical impedance tomography; complete electrode model; inverse crime; regularization;
D O I
10.1007/BF02705419
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An inverse problem is solved to obtain the particle concentration profile in suspension under pressuredriven flow with electrical impedance tomography (EIT). The finite element method (FEM) is employed in the forward problem and the regularized Newton-Raphson iterative method is used in the inverse problem. Different FEM meshes are used in the forward and the inverse problem not to commit inverse crime. To avoid post-calibration of measurement data, the complete electrode model is introduced. For the evaluation of the robustness of the reconstruction algorithm, several testing cases with measurement error are considered. The proposed algorithm can be used to reconstruct the particle concentration in suspension.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条
  • [21] A Proportional Genetic Algorithm for Image Reconstruction of Static Electrical Impedance Tomography
    Zhang, Yijia
    Chen, Huaijin
    Yang, Lu
    Liu, Kai
    Li, Fang
    Bai, Chen
    Wu, Hongtao
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2020, 20 (24) : 15026 - 15033
  • [22] A modified differential evolution algorithm for the reconstruction of electrical impedance tomography images
    Ribeiro, Reiga R.
    Feitosa, Allan R. S.
    de Souza, Ricardo E.
    dos Santos, Wellington P.
    5TH ISSNIP-IEEE BIOSIGNALS AND BIOROBOTICS CONFERENCE (2014): BIOSIGNALS AND ROBOTICS FOR BETTER AND SAFER LIVING, 2014, : 134 - 139
  • [23] Reconstruction of conductivity distribution with a compound variational strategy in electrical impedance tomography
    Shi, Yanyan
    Tian, Zhiwei
    Wang, Meng
    Rao, Zuguang
    Fu, Feng
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 295 - 306
  • [24] Single Frequency Electrical Impedance Tomography System with Offline Reconstruction Algorithm
    Moro, L. C.
    Porto, R. W.
    2015 IEEE 6TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2015,
  • [25] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98
  • [26] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291
  • [27] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Garde, Henrik
    Staboulis, Stratos
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1221 - 1251
  • [28] A reconstruction algorithm for breast cancer imaging with electrical impedance tomography in mammography geometry
    Choi, Myoung Hwan
    Kao, Tzu-Jen
    Isaacson, David
    Saulnier, Gary J.
    Newell, Jonathan C.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (04) : 700 - 710
  • [29] A one step image reconstruction algorithm for electrical impedance tomography in three dimensions
    Le Hyaric, A
    Pidcock, MK
    PHYSIOLOGICAL MEASUREMENT, 2000, 21 (01) : 95 - 98
  • [30] Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography
    Henrik Garde
    Stratos Staboulis
    Numerische Mathematik, 2017, 135 : 1221 - 1251