Species traits explain recent range shifts of Finnish butterflies

被引:253
作者
Poeyry, Juha [1 ]
Luoto, Miska [2 ]
Heikkinen, Risto K. [1 ]
Kuussaari, Mikko [1 ]
Saarinen, Kimmo [3 ]
机构
[1] Finnish Environm Inst, Res Programme Biodivers, FI-00251 Helsinki, Finland
[2] Univ Oulu, Dept Geog, FI-90014 Oulu, Finland
[3] S Karelia Allergy & Environm Inst, FI-55330 Tiuruniemi, Finland
关键词
atlas data; butterflies; climate change; distribution; Finland; generalized estimation equations (GEE); hierarchical partitioning (HP); range shift; species traits; LIFE-HISTORY TRAITS; GEOGRAPHICAL-DISTRIBUTION; CLIMATE; RESPONSES; BIRDS; PHYLOGENIES; AVAILABILITY; EXTINCTIONS; GRASSLANDS; ENVELOPE;
D O I
10.1111/j.1365-2486.2008.01789.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
This study provides a novel systematic comparative analysis of the species characteristics affecting the range margin shifts in butterflies towards higher latitudes, while taking phylogenetic relatedness among species into account. We related observed changes in the northern range margins of 48 butterfly species in Finland between two time periods (1992-1996 and 2000-2004) to 11 species traits. Species with positive records in at least ten 10km x 10km grid squares (in the Finnish National Butterfly Recording Scheme, NAFI) in both periods were included in the study. When corrected for range size change, the 48 butterfly species had shifted their range margins northwards on average by 59.9km between the study periods, with maximum shifts of over 300km for three species. This rate of range shifts exceeds all previously reported records worldwide. Our findings may be explained by two factors: the study region is situated in higher latitudes than in most previous studies and it focuses on the period of most prominent warming during the last 10-15 years. Several species traits exhibited a significant univariate relationship with the range margin shift according to generalized estimation equations (GEE) taking into account the phylogenetic relatedness among species. Nonthreatened butterflies had on average expanded their ranges strongly northwards (84.5 km), whereas the distributions of threatened species were stationary (-2.1 km). Hierarchical partitioning (HP) analysis indicated that mobile butterflies living in forest edges and using woody plants as their larval hosts exhibited largest range shifts towards the north. Thus, habitat availability and dispersal capacity of butterfly species are likely to determine whether they will be successful in shifting their ranges in response to the warming climate.
引用
收藏
页码:732 / 743
页数:12
相关论文
共 58 条
[1]  
[Anonymous], 2005, ACIA overview report, P1020
[2]   Herbivory in global climate change research: direct effects of rising temperature on insect herbivores [J].
Bale, JS ;
Masters, GJ ;
Hodkinson, ID ;
Awmack, C ;
Bezemer, TM ;
Brown, VK ;
Butterfield, J ;
Buse, A ;
Coulson, JC ;
Farrar, J ;
Good, JEG ;
Harrington, R ;
Hartley, S ;
Jones, TH ;
Lindroth, RL ;
Press, MC ;
Symrnioudis, I ;
Watt, AD ;
Whittaker, JB .
GLOBAL CHANGE BIOLOGY, 2002, 8 (01) :1-16
[3]  
Braby M. F., 2006, Zoological Journal of the Linnean Society, V147, P239, DOI 10.1111/j.1096-3642.2006.00218.x
[4]   The assembly of local communities:: Plants and birds in non-reclaimed mining sites [J].
Brändle, M ;
Durka, W ;
Krug, H ;
Brandl, R .
ECOGRAPHY, 2003, 26 (05) :652-660
[5]  
Brommer JE, 2004, ANN ZOOL FENN, V41, P391
[6]   HIERARCHICAL PARTITIONING [J].
CHEVAN, A ;
SUTHERLAND, M .
AMERICAN STATISTICIAN, 1991, 45 (02) :90-96
[7]  
Danilevskii A. S., 1965, Photoperiodism and seasonal development of insects., P283
[8]  
Dennis R.L.H., 1993, BUTTERFLIES CLIMATE
[9]  
FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325
[10]   Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries [J].
Franco, Aldina M. A. ;
Hill, Jane K. ;
Kitschke, Claudia ;
Collingham, Yvonne C. ;
Roy, David B. ;
Fox, Richard ;
Huntley, Brian ;
Thomas, Chris D. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (08) :1545-1553