Structural and electronic properties of non-metal doping in Li2FePO4F compound: spin density functional theory

被引:3
作者
Sukkabot, Worasak [1 ]
机构
[1] Ubon Ratchathani Univ, Fac Sci, Dept Phys, 85 Sathollmark Rd, Ubon Ratchathani 34190, Thailand
关键词
Lithium; density functional theory; Li2FePO4F; rechargeable battery; ELECTROCHEMICAL PROPERTIES; LI-ION; PHOSPHATE CATHODE; LITHIUM; LIFEPO4; PERFORMANCE; FE; OLIVINES; MN; NI;
D O I
10.1080/14786435.2020.1817600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
I comparatively determine the structural and electronic properties of Li2FePO4F compounds with F substituted by Cl, Br and I atom using the spin density functional theory with Perdew-Burke-Ernzerhof generalised gradient approximation (GGA + U). The lattice parameters and volumes are improved by the dopants because of the greater atomic radius in dopants. Non-metal doping in Li2FePO4F reduces the band gap. When doping, Li ion can mobile efficiently because of the reduced ionic character and increased Li-Dopant bond lengths. As the computations, Li2FePO4(F, I) material possesses the highest electronic conductivity among all compounds. Finally, this non-metal doping research provides the detailed information for understanding the enhancement mechanism and assists more broadly in the material design for the wider class of fluorophosphates cathodes in Li-ion rechargeable batteries.
引用
收藏
页码:3155 / 3164
页数:10
相关论文
共 50 条
[31]   Investigation of structural, electronic, mechanical, and thermoelectric properties of the defect chalcopyrite semiconductor ZnIn2Se4 from density functional theory [J].
Mohanty, Abhipsa ;
Priyambada, Aiswarya ;
Parida, Priyadarshini .
MATERIALIA, 2024, 34
[32]   Structural, Electronic, and Optical Properties of Cs2SnX4 (X = Cl, Br, and I) Multilayers: A Density Functional Theory Study [J].
Xu, Ling ;
Wang, Pingjian ;
Kang, Yunxin ;
Zhang, Xiaoxiao ;
Chen, Mingyu ;
Wu, Qingyu ;
Sun, Chengshuai ;
Qiao, Zhuhui ;
Lin, Zhonghai .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2023, 260 (01)
[33]   Tuning electronic structure promoted the hydrogen evolution reaction activity of defective MSi2N4 (M=Mo, W) by transition metal and non-metal doping [J].
Cheng, Yuwen ;
Shao, Cuiping ;
Wang, Wenjie ;
Li, Mengyue .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 :1344-1353
[34]   Structural and Electronic Properties of Cation Doping on the Spinel LiMn2O4: a First-Principles Theory [J].
Liang, Xing-hua ;
Huang, Mei-hong ;
Zhao, Yu-chao ;
Wang, Yu-jiang ;
Tang, Fa-wei .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (11) :9394-9401
[35]   Probing the structural, electronic and optical properties of pure and B, N, or Li substituted Cyclo-18 ring: density functional theory investigations [J].
Trivedi, Ravi ;
Garg, Nandini ;
Jha, Prafulla ;
Chakraborty, Brahmananda .
PHYSICA SCRIPTA, 2024, 99 (05)
[36]   Density Functional Theory Investigations on the Structure and Electronic Properties of Normal Spinel ZnFe2O4 [J].
Yao, Jinhuan ;
Li, Xuanhai ;
Li, Yanwei ;
Le, Shiru .
INTEGRATED FERROELECTRICS, 2013, 145 (01) :17-23
[37]   The Density Functional Theory Investigation on the Structural, Relative Stable and Electronic Properties of Bimetallic PbnSbn (n = 2–12) Clusters [J].
Gaofeng Li ;
Xiumin Chen ;
Hongwei Yang ;
Baoqiang Xu ;
Bin Yang ;
Dachun Liu .
Journal of Cluster Science, 2018, 29 :1305-1311
[38]   Density functional theory investigations of PbSnX2 (X = S, Se, Te) monolayers: Structural and electronic properties [J].
Nhan, Le C. ;
Vi, Vo T. T. ;
Du, Dang X. ;
Cuong, Nguyen Q. ;
Hieu, Nguyen N. ;
Linh, Tran P. T. .
CHEMICAL PHYSICS, 2023, 566
[39]   Structural, energetic, and electronic properties of (CH3CN)2-8 clusters by density functional theory [J].
Mata, RA ;
Cabral, BJC .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2004, 673 (1-3) :155-164
[40]   A density functional theory perspective on the structural, elastic, thermal, and electronic properties of copper nitride doped with transition metal (Fe, Co, and Ni) [J].
Sahoo, Guruprasad ;
Jena, Ajit ;
Patro, L. N. ;
Behera, Gangadhar .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (11)