Probabilistic averaging in bounded Rl-monoids

被引:66
作者
Dvurecenskij, A
Rachunek, J
机构
[1] Slovak Acad Sci, Inst Math, SK-81473 Bratislava, Slovakia
[2] Palacky Univ, Fac Sci, Dept Algebra & Geometry, CZ-77900 Olomouc, Czech Republic
关键词
bounded Rl-monoid; state (= Bosbach state); state-morphism; filter; normal filter; maximal filter; pseudo MV-algebra (= GMV-algebra); pseudo BL-algebra;
D O I
10.1007/s00233-005-0545-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bounded Rl-monoids generalize GMV-algebras and pseudo BL-algebras. Such monoids do not admit, in general, any analogue of addition, in contrast to GMV-algebras. Nevertheless we introduce the notion of a state (an analogue of a probability measure). It coincides with that for GMV-algebras. We show that the existence of states is crucially connected with the existence of normal and maximal filters. In addition, some topological properties of the extremal states and the hull-kernel topology of filters are studied.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 26 条
  • [1] [Anonymous], 1986, MATH SURVEYS MONOGR
  • [2] Cancellative residuated lattices
    Bahls, P
    Cole, J
    Galatos, N
    Jipsen, P
    Tsinakis, C
    [J]. ALGEBRA UNIVERSALIS, 2003, 50 (01) : 83 - 106
  • [3] The structure of residuated lattices
    Blount, K
    Tsinakis, C
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (04) : 437 - 461
  • [4] Bosbach B., 1982, RESULTATE MATH, V5, P107
  • [5] Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
  • [6] Cignoli R. L, 2013, Algebraic foundations of many-valued reasoning, V7
  • [7] Di Nola A., 2002, Multiple-Value Logic, V8, P717
  • [8] Non-commutative residuated lattices
    Dilworth, R. P.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) : 426 - 444
  • [9] DINOLA A, 2002, MULTIPLE VALUED LOGI, V8, P673
  • [10] Pseudo MV-algebras are intervals in l-groups
    Dvurecenskij, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 427 - 445