Probabilistic averaging in bounded Rl-monoids

被引:66
作者
Dvurecenskij, A
Rachunek, J
机构
[1] Slovak Acad Sci, Inst Math, SK-81473 Bratislava, Slovakia
[2] Palacky Univ, Fac Sci, Dept Algebra & Geometry, CZ-77900 Olomouc, Czech Republic
关键词
bounded Rl-monoid; state (= Bosbach state); state-morphism; filter; normal filter; maximal filter; pseudo MV-algebra (= GMV-algebra); pseudo BL-algebra;
D O I
10.1007/s00233-005-0545-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bounded Rl-monoids generalize GMV-algebras and pseudo BL-algebras. Such monoids do not admit, in general, any analogue of addition, in contrast to GMV-algebras. Nevertheless we introduce the notion of a state (an analogue of a probability measure). It coincides with that for GMV-algebras. We show that the existence of states is crucially connected with the existence of normal and maximal filters. In addition, some topological properties of the extremal states and the hull-kernel topology of filters are studied.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[2]   Cancellative residuated lattices [J].
Bahls, P ;
Cole, J ;
Galatos, N ;
Jipsen, P ;
Tsinakis, C .
ALGEBRA UNIVERSALIS, 2003, 50 (01) :83-106
[3]   The structure of residuated lattices [J].
Blount, K ;
Tsinakis, C .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (04) :437-461
[4]  
Bosbach B., 1982, RESULTATE MATH, V5, P107
[5]  
Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
[6]  
Cignoli R. L, 2013, Algebraic foundations of many-valued reasoning, V7
[7]  
Di Nola A., 2002, Multiple-Value Logic, V8, P717
[8]   Non-commutative residuated lattices [J].
Dilworth, R. P. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) :426-444
[9]  
DINOLA A, 2002, MULTIPLE VALUED LOGI, V8, P673
[10]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445