Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates

被引:81
作者
Chan, Mei Yin [1 ]
Komatsu, Katsuyoshi [1 ]
Li, Song-Lin [1 ]
Xu, Yong [1 ]
Darmawan, Peter [1 ]
Kuramochi, Hiromi [1 ]
Nakaharai, Shu [2 ]
Aparecido-Ferreira, Alex [1 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [3 ]
Tsukagoshi, Kazuhito [1 ]
机构
[1] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitechton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Adv Ind Sci & Technol, GNC, Tsukuba, Ibaraki 3058569, Japan
[3] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
关键词
GRAPHENE; SCATTERING; LAYERS;
D O I
10.1039/c3nr03220e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices.
引用
收藏
页码:9572 / 9576
页数:5
相关论文
共 33 条
[1]   Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides [J].
Ayari, Anthony ;
Cobas, Enrique ;
Ogundadegbe, Ololade ;
Fuhrer, Michael S. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[2]   Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method [J].
Balendhran, Sivacarendran ;
Ou, Jian Zhen ;
Bhaskaran, Madhu ;
Sriram, Sharath ;
Ippolito, Samuel ;
Vasic, Zoran ;
Kats, Eugene ;
Bhargava, Suresh ;
Zhuiykov, Serge ;
Kalantar-zadeh, Kourosh .
NANOSCALE, 2012, 4 (02) :461-466
[3]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[4]   Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale, High-Performance Devices [J].
Bresnehan, Michael S. ;
Hollander, Matthew J. ;
Wetherington, Maxwell ;
LaBella, Michael ;
Trumbull, Kathleen A. ;
Cavalero, Randal ;
Snyder, David W. ;
Robinson, Joshua A. .
ACS NANO, 2012, 6 (06) :5234-5241
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]  
Ghatak S, 2011, ACS NANO, V5, P7707, DOI [10.1021/nn202852J, 10.1021/nn202852j]
[10]   Pentacene organic thin-film transistors - Molecular ordering and mobility [J].
Gundlach, DJ ;
Lin, YY ;
Jackson, TN ;
Nelson, SF ;
Schlom, DG .
IEEE ELECTRON DEVICE LETTERS, 1997, 18 (03) :87-89