Numerical simulation of crucible rotation in high-temperature solution growth method using a Fourier-Legendre spectral element method

被引:11
|
作者
Mei, Huan [1 ]
Zeng, Zhong [1 ,2 ,3 ]
Qiu, Zhouhua [1 ]
Li, Liang [1 ]
Yao, Liping [1 ]
Mizuseki, Hiroshi [2 ]
Kawazoe, Yoshiyuki [2 ]
机构
[1] Chongqing Univ, Dept Engn Mech, Chongqing 400044, Peoples R China
[2] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[3] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
ACRT; Spectral element method; High-temperature solution crystal growth; Numerical simulation; VERTICAL BRIDGMAN GROWTH; CRYSTAL-GROWTH; SEGREGATION; CDXHG1-XTE; ACRT; INTERFACE;
D O I
10.1016/j.ijheatmasstransfer.2013.05.018
中图分类号
O414.1 [热力学];
学科分类号
摘要
Striation, which is detrimental to the crystal quality, occurs in the inhomogeneous solution concentration field. The accelerated crucible rotation technique (ACRT), a stirring technique, is conceived to alleviate the striation and is commonly used in solution crystal growth. In this paper, the effect of ACRT on the concentration homogenization in high-temperature solution crystal growth method is investigated by a Fourier-Legendre spectral element method, where Gauss-Radau points are chosen for the element involving the origin to avoid the 1/r singularity at r = 0, Gauss-Lobatto points are adopted for other elements in radial direction. Fourier polynomial is applied in azimuthal direction. The time splitting method is used for temporal discretization. Six typical ACRT modes are simulated, and the standard derivation is adopted to evaluate the homogeneous level of solution concentration. As a result, the optimum ACRT mode and time period are suggested. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:882 / 891
页数:10
相关论文
共 50 条
  • [1] A Fourier-Legendre spectral element method in polar coordinates
    Qiu, Zhouhua
    Zeng, Zhong
    Mei, Huan
    Li, Liang
    Yao, Liping
    Zhang, Liangqi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 666 - 675
  • [2] A Numerical Simulation Study on the Effects of Crucible Rotation and Magnetic Fields in Growth of SiGe by the Traveling Heater Method
    Takagi, Youhei
    Okano, Yasunori
    Dost, Sadik
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [3] Numerical Simulation of High-Temperature Oxidation of Lubricants Using the Network Method
    Sanchez Perez, J. F.
    Moreno, J. A.
    Alhama, F.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2015, 202 (07) : 982 - 991
  • [4] Numerical simulation of superimposed finite strains using spectral element method
    Levin, V. A.
    Zingerman, K. M.
    Vershinin, A. V.
    Konovalov, D. A.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (05) : 1205 - 1217
  • [5] Numerical simulation of superimposed finite strains using spectral element method
    V. A. Levin
    K. M. Zingerman
    A. V. Vershinin
    D. A. Konovalov
    Continuum Mechanics and Thermodynamics, 2022, 34 : 1205 - 1217
  • [6] A spectral element method for the numerical simulation of axisymmetric flow in Czochralski crystal growth
    Qiu, Zhouhua
    Zeng, Zhong
    Mei, Huan
    Yao, Liping
    Liu, Qiuming
    MANAGEMENT, MANUFACTURING AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 452-453 : 1195 - +
  • [7] Numerical Simulation of High Electron Mobility Transistors based on the Spectral Element Method
    Li, Feng
    Liu, Qing H.
    Klemer, David P.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (10): : 1144 - 1150
  • [8] Using Legendre spectral element method with Quasi-linearization method for solving Bratu's problem
    Lotfi, Mahmoud
    Alipanah, Amjad
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (04): : 580 - 588
  • [9] Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method
    Li, Xiao-Yu
    Wang, Yu-Lan
    Li, Zhi-Yuan
    AIMS MATHEMATICS, 2023, 8 (01): : 2407 - 2418
  • [10] Numerical simulation of steady planar die swell for a Newtonian fluid using the spectral element method
    Russo, G.
    Phillips, T. N.
    COMPUTERS & FLUIDS, 2010, 39 (05) : 780 - 792