On the first eigenvalue of a fourth order Steklov problem

被引:40
作者
Bucur, Dorin [2 ]
Ferrero, Alberto [3 ]
Gazzola, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Savoie, CNRS, UMR 5127, Math Lab, F-73376 Le Bourget Du Lac, France
[3] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
COUPLED EQUATION APPROACH; BIHARMONIC EQUATION; BOUNDARY-CONDITIONS; NUMERICAL SOLUTION; FINITE DIFFERENCES; DOMAINS; POSITIVITY; OPERATOR;
D O I
10.1007/s00526-008-0199-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some results about the first Steklov eigenvalue d (1) of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality (Fichera in Atti Accad Naz Lincei 19:411-418, 1955) may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d (1) for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
引用
收藏
页码:103 / 131
页数:29
相关论文
共 26 条
[1]   L2-INTEGRABILITY OF 2ND-ORDER DERIVATIVES FOR POISSON EQUATION IN NONSMOOTH DOMAINS [J].
ADOLFSSON, V .
MATHEMATICA SCANDINAVICA, 1992, 70 (01) :146-160
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]  
BABUSKA I, 1961, CZECH MATH J, V11, P165
[4]  
Babuska I., 1961, Czechoslovak Math. J, V11, P76
[5]  
Berchio E., 2007, Adv Differ Equ, V12, P381
[6]   Positivity preserving property for a class of biharmonic elliptic problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Mitidieri, Enzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :1-23
[7]  
Bucur D., 2005, Prog. Nonlinear Differ. Equ. Appl, V65
[8]  
Faber G., 1923, Sitz. Bayer Acad. Wiss., P169
[9]  
Ferrero A., 2005, ANALYSIS, V25, P315, DOI DOI 10.1524/ANLY.2005.25.4.315
[10]  
Fichera G., 1955, NAZ LINCEI REND CL S, V19, P411