Metabolic engineering approaches for lactic acid production

被引:50
|
作者
Singh, SK [1 ]
Ahmed, SU [1 ]
Pandey, A [1 ]
机构
[1] CSIR, Reg Res Lab, Div Biotechnol, Trivandrum 695019, Kerala, India
关键词
lactic acid bacteria; genetic modification; metabolic engineering; production; agro-industrial residues;
D O I
10.1016/j.procbio.2005.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
have been tried to improve the lactic acid production. The lactic acid bacteria, yeast and fungal systems have been engineered to enhance the lactic acid production. The advent of biotechnology and recognition of industrial applications of lactic acid led to the efforts being focused on use of biotechnological tools to engineer lactic acid bacteria (LAB) and other systems for the production of lactic acid. The initial efforts in LAB genetic modifications were concentrated mostly to develop LAB with enhanced qualities for food grade applications, using traditional approaches. The spontaneous mutations were also attempted by using insertion sequence (IS) elements. The LAB subjected to genetic improvement have been used in dairy industry for flavour enhancement, resistance to bacteriophages, addition of nutritional components and stability and structure of end products. The controlled gene expression systems for industrial gram-positive bacteria with low G + C content have already been reported. However, with the recognition of polylactide as a biodegradable polymer, attempts were directed to reduce the cost of lactic acid production by genetically modifying the organism, by using various cheaply available agro-industrial residues and by process modifications to remove the lactic acid produced during the course of fermentation. The authors here have tried to briefly summaries the various approaches to metabolic engineering used for improving the lactic acid production and cost reduction. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:991 / 1000
页数:10
相关论文
共 50 条
  • [41] Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production
    Li, Dashuai
    Wu, Yufen
    Wei, Panpan
    Gao, Xiao
    Li, Man
    Zhang, Chuanbo
    Zhou, Zhijiang
    Lu, Wenyu
    CHEMICAL ENGINEERING SCIENCE, 2020, 218
  • [42] Metabolic engineering of Escherichia coli for the production of (R)-α-lipoic acid
    Jianbin Xiao
    Shaobin Guo
    Xian’ai Shi
    Biotechnology Letters, 2023, 45 : 273 - 286
  • [43] Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone
    Cardenas, Javier
    Da Silva, Nancy A.
    METABOLIC ENGINEERING, 2014, 25 : 194 - 203
  • [44] Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid
    Jang, Yu-Sin
    Woo, Hee Moon
    Im, Jung Ae
    Kim, In Ho
    Lee, Sang Yup
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (21) : 9355 - 9363
  • [45] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Fang Chen
    Yong Tao
    Cheng Jin
    Yang Xu
    Bai-Xue Lin
    Applied Microbiology and Biotechnology, 2015, 99 : 2603 - 2611
  • [46] Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid
    Yu-Sin Jang
    Hee Moon Woo
    Jung Ae Im
    In Ho Kim
    Sang Yup Lee
    Applied Microbiology and Biotechnology, 2013, 97 : 9355 - 9363
  • [47] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Chen, Fang
    Tao, Yong
    Jin, Cheng
    Xu, Yang
    Lin, Bai-Xue
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) : 2603 - 2611
  • [48] Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid
    Ji, Rong-Yu
    Ding, Ying
    Shi, Tian-Qiong
    Lin, Lu
    Huang, He
    Gao, Zhen
    Ji, Xiao-Jun
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [49] Metabolic engineering strategies for caffeic acid production in Escherichia coli
    Hernandez-Chavez, Georgina
    Martinez, Alfredo
    Gosset, Guillermo
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2019, 38 (01): : 19 - 26
  • [50] Engineering of E. coli for increased production of L-lactic acid
    Mulok, Tengku Elida Tengku Zainal
    Chong, Mei-Ling
    Shirai, Yoshihito
    Rahim, Raha Abdul
    Hassan, Mohd Ali
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (18): : 4597 - 4603