Numerical procedure with analytic derivative for unsteady fluid-structure interaction

被引:7
作者
Mbaye, I. [1 ]
Murea, C. M. [1 ]
机构
[1] Univ Haute Alsace, Lab Math Informat & Applicat, F-68093 Mulhouse, France
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2008年 / 24卷 / 11期
关键词
fluid-structure interaction; arbitrary Lagrangian Eulerian framework; analytic derivative; finite element method;
D O I
10.1002/cnm.1031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unsteady interaction between an incompressible fluid and a deformable elastic structure is analyzed. An implicit numerical method is proposed. At each time step, the stresses at the fluid-structure interface are determined as a solution of an optimization problem. The modal decomposition of the structure equations leads to a problem to be solved with a reduced number of unknowns. The analytic gradient of the cost function was derived. Numerical tests validate the analytic derivative and show the behavior of a two-dimensional Navier-Stokes equations with plate-like model interaction. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1257 / 1275
页数:19
相关论文
共 34 条
[1]   Compressibility and gravity effects in internal fluid-structure vibrations: Basic equations and appropriate variational formulations [J].
Andrianarison, O ;
Ohayon, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) :1958-1972
[2]   Finite element developments for general fluid flows with structural interactions [J].
Bathe, KJ ;
Zhang, H .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (01) :213-232
[3]   On the existence of solution for a nonhomogeneous Stokes-rod coupled problem [J].
Bayada, G ;
Chambat, M ;
Cid, B ;
Vázquez, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :1-19
[4]   Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate [J].
Chambolle, A ;
Desjardins, B ;
Esteban, MJ ;
Grandmont, C .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :368-404
[5]   A particle model for fluid-structure interaction [J].
Cottet, GH .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) :833-838
[6]   On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem [J].
da Veiga, H. Beirao .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (01) :21-52
[7]  
Dennis Jr J. E., 1996, CLASSICS APPL MATH, V16
[8]   Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions [J].
Deparis, S ;
Fernández, MA ;
Formaggia, L .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (04) :601-616
[9]  
Deparis S., 2004, P 3 INT C COMP FLUID
[10]  
Desjardins B., 2001, REV MAT COMPLUT, V14, P523