Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization

被引:742
作者
Mainge, Paul-Emile [1 ]
机构
[1] Univ Antilles Guyane, GRIMAAG, Dept Sci Interfac, F-97233 Martinique, France
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 7-8期
关键词
Convex minimization; Projected gradient method; Nonsmooth optimization; Viscosity method;
D O I
10.1007/s11228-008-0102-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a strong convergence theorem regarding a regularized variant of the projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces. Only one projection step is needed per iteration and the involved stepsizes are controlled so that the algorithm is of practical interest. To this aim, we develop new techniques of analysis which can be adapted to many other non-Fejerian methods.
引用
收藏
页码:899 / 912
页数:14
相关论文
共 27 条
[1]   Extension of subgradient techniques for nonsmooth optimization in Banach spaces [J].
Alber, YI ;
Iusem, AN .
SET-VALUED ANALYSIS, 2001, 9 (04) :315-335
[2]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[3]  
ALBER YI, 1983, SOV MATH DOKL, V27, P511
[4]  
[Anonymous], PACIFIC J OPTIM
[5]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[6]  
Bello L, 2005, J COMPUT MATH, V23, P225
[7]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[8]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[9]  
Byrne CL, 2004, INVERSE PROBL, V18, P441
[10]  
Clarke FH, 1983, OPTIMIZATION NONSMOO