JACOBI ALGORITHM FOR THE BEST LOW MULTILINEAR RANK APPROXIMATION OF SYMMETRIC TENSORS

被引:43
作者
Ishteva, Mariya [1 ]
Absil, P. -A. [2 ]
Van Dooren, Paul [2 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, B-1050 Brussels, Belgium
[2] Catholic Univ Louvain, Dept Engn Math, B-1348 Louvain, Belgium
基金
欧洲研究理事会;
关键词
multilinear algebra; higher-order tensor; rank reduction; singular value decomposition; Jacobi rotation; INDEPENDENT COMPONENT ANALYSIS; POWER METHOD; 3-MODE DATA; CONVERGENCE; RANK-(R-1; R-2;
D O I
10.1137/11085743X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem discussed in this paper is the symmetric best low multilinear rank approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations, for which symmetry is preserved at each iteration. Two numerical examples are provided indicating the need for such algorithms. An important part of the paper consists of proving that our algorithm converges to stationary points of the objective function. This can be considered an advantage of the proposed algorithm over existing symmetry-preserving algorithms in the literature.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 50 条
[1]   ACCELERATED LINE-SEARCH AND TRUST-REGION METHODS [J].
Absil, P. -A. ;
Gallivan, K. A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :997-1018
[2]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[3]   Improving the speed of multi-way algorithms: Part I. Tucker3 [J].
Andersson, CA ;
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) :93-103
[4]  
Borckmans PB, 2010, LECT NOTES COMPUT SC, V6234, P13, DOI 10.1007/978-3-642-15461-4_2
[5]   Jacobi angles for simultaneous diagonalization [J].
Cardoso, JF ;
Souloumiac, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) :161-164
[6]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[7]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[8]  
Cichocki A., 2009, NONNEGATIVE MATRIX T
[9]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[10]   SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK [J].
Comon, Pierre ;
Golub, Gene ;
Lim, Lek-Heng ;
Mourrain, Bernard .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1254-1279