Cardiac Dysfunction and Oxidative Stress in the Metabolic Syndrome: an Update on Antioxidant Therapies

被引:111
作者
Ilkun, Olesya
Boudina, Sihem
机构
[1] Univ Utah, Sch Med, Div Endocrinol Metab & Diabet, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sch Med, Program Mol Med, Salt Lake City, UT 84112 USA
基金
美国国家卫生研究院;
关键词
Cardiac dysfunction; mitochondrial dysfunction; reactive oxygen species; antioxidants; oxidative stress; substrate utilization; metabolic syndrome; insulin resistance; MYOCARDIAL SUBSTRATE METABOLISM; HIGH-FAT DIET; CONGESTIVE-HEART-FAILURE; ACID-BINDING PROTEIN; CONTRACTILE DYSFUNCTION; INSULIN-RESISTANCE; DIABETIC CARDIOMYOPATHY; MITOCHONDRIAL DYSFUNCTION; ENERGY-METABOLISM; COENZYME Q(10);
D O I
10.2174/1381612811319270003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance, dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac dysfunction and their combination carries additional risk. The mechanisms underlying cardiac dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization, mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms characterize the myocardium of humans and animals with the MetS. The mechanisms for increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using antioxidants therapies for the treatment of CVD have been disappointing because of the lack of efficacy and undesired side effects. The focus of this review is to summarize the current knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special interest in the role of oxidative stress. Finally, we will update the reader on the results obtained with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD in the MetS.
引用
收藏
页码:4806 / 4817
页数:12
相关论文
共 179 条
[91]   Novel Mitochondria-Targeted Antioxidants: Plastoquinone Conjugated with Cationic Plant Alkaloids Berberine and Palmatine [J].
Lyamzaev, Konstantin G. ;
Pustovidko, Antonina V. ;
Simonyan, Ruben A. ;
Rokitskaya, Tatyana I. ;
Domnina, Lidia V. ;
Ivanova, Olga Yu. ;
Severina, Inna I. ;
Sumbatyan, Natalia V. ;
Korshunova, Galina A. ;
Tashlitsky, Vadim N. ;
Roginsky, Vitaly A. ;
Antonenko, Yuriy N. ;
Skulachev, Maxim V. ;
Chernyak, Boris V. ;
Skulachev, Vladimir P. .
PHARMACEUTICAL RESEARCH, 2011, 28 (11) :2883-2895
[92]   RETRACTED: Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy (Retracted article. See MAY, 2023) [J].
Ma, Heng ;
Li, Shi-Yan ;
Xu, Peisheng ;
Babcock, Sara A. ;
Dolence, E. Kurt ;
Brownlee, Michael ;
Li, Ji ;
Ren, Jun .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2009, 13 (8B) :1751-1764
[93]   Regulation of myocardial growth and death by NADPH oxidase [J].
Maejima, Yasuhiro ;
Kuroda, Junya ;
Matsushima, Shouji ;
Ago, Tetsuro ;
Sadoshima, Junichi .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2011, 50 (03) :408-416
[94]   Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes [J].
Makino, Ayako ;
Suarez, Jorge ;
Gawlowski, Thomas ;
Han, Wenlong ;
Wang, Hong ;
Scott, Brian T. ;
Dillmann, Wolfgang H. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2011, 300 (06) :R1296-R1302
[95]  
Manning PJ, 2012, NUTR METAB CARDIOVAS
[96]   Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes [J].
Matsushima, Shouji ;
Kinugawa, Shintaro ;
Yokota, Takashi ;
Inoue, Naoki ;
Ohta, Yukihiro ;
Hamaguchi, Sanae ;
Tsutsui, Hiroyuki .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2009, 297 (01) :H409-H416
[97]   Stress-responsive protein kinases in redox-regulated apoptosis signaling [J].
Matsuzawa, A ;
Ichijo, H .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (3-4) :472-481
[98]  
MCCORD JM, 1969, J BIOL CHEM, V244, P6049
[99]   Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density [J].
McQueen, AP ;
Zhang, DF ;
Hu, P ;
Swenson, L ;
Yang, Y ;
Zaha, VG ;
Hoffman, JL ;
Yun, UJ ;
Chakrabarti, G ;
Wang, ZM ;
Albertine, KH ;
Abel, ED ;
Litwin, SE .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2005, 39 (06) :882-892
[100]   Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function [J].
Medikayala, S. ;
Piteo, B. ;
Zhao, X. ;
Edwards, J. G. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2011, 300 (02) :C338-C348