Maximum principles, Liouville-type theorems and symmetry results for a general class of quasilinear anisotropic equations

被引:12
作者
Barbu, Luminita [1 ]
Enache, Cristian [2 ]
机构
[1] Ovidius Univ, Dept Math, Constanta 900527, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
关键词
Maximum principles; anisotropic equations; Liouville theorems; symmetry; Wulff shapes; DEGENERATE;
D O I
10.1515/anona-2015-0127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a general class of quasilinear anisotropic equations. We first derive some maximum principles for two appropriate P-functions, in the sense of Payne (see the book of Sperb [18]). These maximum principles are then employed to obtain a Liouville-type result and a Serrin-Weinberger-type symmetry result.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 21 条
  • [1] [Anonymous], 1968, LINEAR QUASILINEAR E
  • [2] A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES
    CAFFARELLI, L
    GAROFALO, N
    SEGALA, F
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) : 1457 - 1473
  • [3] Gradient Bounds and Rigidity Results for Singular, Degenerate, Anisotropic Partial Differential Equations
    Cozzi, Matteo
    Farina, Alberto
    Valdinoci, Enrico
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 189 - 214
  • [4] Extensions of a theorem of Cauchy-Liouville
    Cuccu, Fabrizio
    Mohammed, Ahmed
    Porru, Giovanni
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 222 - 231
  • [5] On the regularity of solutions in the Pucci-Serrin identity
    Degiovanni, M
    Musesti, A
    Squassina, M
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) : 317 - 334
  • [6] Remarks on an overdetermined boundary value problem
    Farina, A.
    Kawohl, B.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (03) : 351 - 357
  • [7] Gradient bounds for anisotropic partial differential equations
    Farina, Alberto
    Valdinoci, Enrico
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) : 923 - 936
  • [8] Farina A, 2007, HBK DIFF EQUAT STATI, V4, P61, DOI 10.1016/S1874-5733(07)80005-2
  • [9] Ferone V, 2009, P AM MATH SOC, V137, P247
  • [10] Overdetermined problems with possibly degenerate ellipticity, a geometric approach
    Fragala, Ilaria
    Gazzola, Filippo
    Kawohl, Bernd
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (01) : 117 - 132