2D Honeycomb Silicon: A Review on Theoretical Advances for Silicene Field-Effect Transistors

被引:21
作者
Chuan, Mu Wen [1 ]
Wong, Kien Liong [1 ]
Hamzah, Afiq [1 ]
Rusli, Shahrizal [1 ]
Alias, Nurul Ezaila [1 ]
Lim, Cheng Siong [1 ]
Tan, Michael Loong Peng [1 ]
机构
[1] Univ Teknol Malaysia, Fac Engn, Sch Elect Engn, Skudai 81310, Johor, Malaysia
关键词
Silicene; silicon; two-dimensional materials; bandgap engineering; transistor; theoretical studies; ELECTRONIC-PROPERTIES; MAGNETIC-PROPERTIES; OPTICAL-PROPERTIES; BAND-GAP; GRAPHENE; NANORIBBONS; GERMANENE; 1ST-PRINCIPLES; STRAIN; AL;
D O I
10.2174/1573413715666190709120019
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Catalysed by the success of mechanical exfoliated free-standing graphene, two dimensional (2D) semiconductor materials are successively an active area of research. Silicene is a monolayer of silicon (Si) atoms with a low-buckled honeycomb lattice possessing a Dirac cone and massless fermions in the band structure. Another advantage of silicene is its compatibility with the Silicon wafer fabrication technology. To effectively apply this 2D material in the semiconductor industry, it is important to carry out theoretical studies before proceeding to the next step. In this paper, an overview of silicene and silicene nanoribbons (SiNRs) is described. After that, the theoretical studies to engineer the bandgap of silicene are reviewed. Recent theoretical advancement on the applications of silicene for various field-effect transistor (FET) structures is also discussed. Theoretical studies of silicene have shown promising results for their application as FETs and the efforts to study the performance of bandgap-engineered silicene FET should continue to improve the device performance.
引用
收藏
页码:595 / 607
页数:13
相关论文
共 103 条
[1]   Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration [J].
Ali, Muhammad ;
Pi, Xiaodong ;
Liu, Yong ;
Yang, Deren .
AIP ADVANCES, 2017, 7 (04)
[2]   Interplay between edge and bulk states in silicene nanoribbon [J].
An, Xing-Tao ;
Zhang, Yan-Yang ;
Liu, Jian-Jun ;
Li, Shu-Shen .
APPLIED PHYSICS LETTERS, 2013, 102 (21)
[3]   High-field transport in a graphene nanolayer [J].
Arora, Vijay K. ;
Tan, Michael L. P. ;
Gupta, Chirag .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
[4]   Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene [J].
Balendhran, Sivacarendran ;
Walia, Sumeet ;
Nili, Hussein ;
Sriram, Sharath ;
Bhaskaran, Madhu .
SMALL, 2015, 11 (06) :640-652
[5]   DOUBLE-GATE SILICON-ON-INSULATOR TRANSISTOR WITH VOLUME INVERSION - A NEW DEVICE WITH GREATLY ENHANCED PERFORMANCE [J].
BALESTRA, F ;
CRISTOLOVEANU, S ;
BENACHIR, M ;
BRINI, J ;
ELEWA, T .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (09) :410-412
[6]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[7]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[8]   Infrared absorbance of silicene and germanene [J].
Bechstedt, Friedhelm ;
Matthes, Lars ;
Gori, Paola ;
Pulci, Olivia .
APPLIED PHYSICS LETTERS, 2012, 100 (26)
[9]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[10]   MATERIALS SCIENCE Sticky problem snares wonder material [J].
Brumfiel, Geoff .
NATURE, 2013, 495 (7440) :152-153