Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernforde Bay, Baltic Sea

被引:90
作者
Bertics, V. J. [1 ]
Loescher, C. R. [2 ]
Salonen, I. [2 ]
Dale, A. W. [1 ]
Gier, J. [1 ]
Schmitz, R. A. [2 ]
Treude, T. [1 ]
机构
[1] Helmholtz Ctr Ocean Res Kiel, GEOMAR, D-24148 Kiel, Germany
[2] Univ Kiel, Inst Allgemeine Mikrobiol, D-24118 Kiel, Germany
关键词
ANAEROBIC AMMONIUM OXIDATION; SHALLOW-WATER STATION; OXYGEN MINIMUM ZONE; WESTERN KIEL BIGHT; REDUCING BACTERIA; N-2; FIXATION; SEDIMENTATION EVENTS; AEROBIC RESPIRATION; MARINE-SEDIMENTS; NIFH EXPRESSION;
D O I
10.5194/bg-10-1243-2013
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N) cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB) have the genetic potential to fix molecular N (N-2). Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N-2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernforde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA) and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation) activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N-2 fixation (approximated from NA) and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm(-3) d(-1) of N and SO42-, respectively) and October (approx. 22 and 1300 nmol cm(-3) d(-1) of N and SO42-, respectively), and lowest rates occurring in February (approx. 8 and 32 nmol cm(-3) d(-1) of N and SO42-, respectively). These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm events. Molecular analysis demonstrated the presence of nifH sequences related to two known N-2 fixing SRB, namely Desulfovibrio vulgaris and Desulfonema limicola, supporting the hypothesis that some of the nitrogenase activity detected may be attributed to SRB. Overall, our data show that Eckernforde Bay represents a complex ecosystem where numerous environmental variables combine to influence benthic microbial activities involving N and sulfur cycling.
引用
收藏
页码:1243 / 1258
页数:16
相关论文
共 119 条
[1]   EVIDENCE FOR LOCALIZED ENHANCEMENT OF BIOLOGICAL-ACTIVITY ASSOCIATED WITH TUBE AND BURROW STRUCTURES IN DEEP-SEA SEDIMENTS AT THE HEBBLE SITE, WESTERN NORTH-ATLANTIC [J].
ALLER, JY ;
ALLER, RC .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1986, 33 (06) :755-790
[2]   EXTENT AND INTENSITY OF THE ANOXIC ZONE IN BASINS AND FJORDS [J].
ANDERSON, JJ ;
DEVOL, AH .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1987, 34 (5-6) :927-944
[3]  
Balzer W, 1987, SEAWATER SEDIMENT IN, P111
[4]  
Bange H. W., 2011, LOICZ IN PRESS, p[1, 16]
[5]   The nitrogen cycle in the Arabian Sea [J].
Bange, HW ;
Naqvi, SWA ;
Codispoti, LA .
PROGRESS IN OCEANOGRAPHY, 2005, 65 (2-4) :145-158
[6]   Denitrification and Nitrogen Fixation Dynamics in the Area Surrounding an Individual Ghost Shrimp (Neotrypaea californiensis) Burrow System [J].
Bertics, Victoria J. ;
Sohm, Jill A. ;
Magnabosco, Cara ;
Ziebis, Wiebke .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (11) :3864-3872
[7]   Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments [J].
Bertics, Victoria J. ;
Ziebis, Wiebke .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (11) :3022-3034
[8]   Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction [J].
Bertics, Victoria J. ;
Sohm, Jill A. ;
Treude, Tina ;
Chow, Cheryl-Emiliane T. ;
Capone, Douglas G. ;
Fuhrman, Jed A. ;
Ziebis, Wiebke .
MARINE ECOLOGY PROGRESS SERIES, 2010, 409 :1-15
[9]   A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling [J].
Brandes, JA ;
Devol, AH .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
[10]   SIMULTANEOUS NITRATE AND OXYGEN RESPIRATION IN COASTAL SEDIMENTS - EVIDENCE FOR DISCRETE DIAGENESIS [J].
BRANDES, JA ;
DEVOL, AH .
JOURNAL OF MARINE RESEARCH, 1995, 53 (05) :771-797