Scalable, Low-Energy Hybrid Photonic Space Switch

被引:49
作者
Cheng, Qixiang [1 ]
Wonfor, Adrian [1 ]
Penty, Richard V. [1 ]
White, Ian H. [1 ]
机构
[1] Univ Cambridge, Ctr Photon Syst, Elect Engn Div, Dept Engn, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
Mach-Zehnder interferometers; optical switches; packet switching; semiconductor optical amplifiers; OPTICAL SWITCH; LOW-CROSSTALK; NETWORKS; INP; INTERCONNECTS; LIMITATIONS; CIRCUITS; POWER;
D O I
10.1109/JLT.2013.2278708
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 x 2 dilated hybrid switch module. A "building block" approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 x 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches.
引用
收藏
页码:3077 / 3084
页数:8
相关论文
共 39 条
[1]   Compact polarization-insensitive InGaAsP-InP 2x2 optical switch [J].
Agashe, SS ;
Shiu, KT ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (01) :52-54
[2]   238 x 238 micromechanical optical cross connect [J].
Aksyuk, VA ;
Arney, S ;
Basavanhally, NR ;
Bishop, DJ ;
Bolle, CA ;
Chang, CC ;
Frahm, R ;
Gasparyan, A ;
Gates, JV ;
George, R ;
Giles, CR ;
Kim, J ;
Kolodner, PR ;
Lee, TM ;
Neilson, DT ;
Nijander, C ;
Nuzman, CJ ;
Paczkowski, A ;
Papazian, AR ;
Pardo, F ;
Ramsey, DA ;
Ryf, R ;
Scotti, RE ;
Shea, H ;
Simon, ME .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (04) :587-589
[3]  
[Anonymous], 1965, MATH THEORY CONNECTI
[4]   Measurement of reflectivity of butt-joint active-passive interfaces in integrated extended cavity lasers [J].
Barbarin, Y ;
Bente, EAJM ;
Marquet, C ;
Leclère, EJS ;
Binsma, JJM ;
Smit, MK .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (11) :2265-2267
[5]   Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits [J].
Bukkems, HG ;
Herben, CGP ;
Smit, MK ;
Groen, FH ;
Moerman, I .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (11) :1420-1422
[6]   Taper-Integrated Multimode-Interference Based Waveguide Crossing Design [J].
Chen, Chyong-Hua ;
Chiu, Chia-Hsiang .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (11) :1656-1661
[7]  
Crovella M., 2006, Internet Measurement: Infrastructure, Traffic & Applications
[8]  
Dally W. J., 2004, Principles and Practices of Interconnection Networks
[9]   Electrorefraction in strained InGaAs/InP chopped quantum wells: Significance of the interface layers [J].
Dorren, BHP ;
Silov, AY ;
Leys, MR ;
Haverkort, JEM ;
Wolter, JH .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (05) :2331-2335
[10]   A chopped quantum-well polarization-independent interferometric switch at 1.53 μm [J].
Dorren, BHP ;
Silov, AY ;
Leys, MR ;
Dukers, DMH ;
Haverkort, JEM ;
Maat, DHP ;
Zhu, Y ;
Groen, FH ;
Wolter, JH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (03) :317-324