COMPLETE EMBEDDED COMPLEX CURVES IN THE BALL OF C2 CAN HAVE ANY TOPOLOGY

被引:13
作者
Alarcon, Antonio [1 ,2 ]
Globevnik, Josip [3 ,4 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Granada, Spain
[3] Univ Ljubljana, Dept Math, Ljubljana, Slovenia
[4] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
complex curves; holomorphic embeddings; complete bounded submanifolds; BORDERED RIEMANN SURFACE; HOLOMORPHIC DISCS; DISCRETE SETS; DOMAINS;
D O I
10.2140/apde.2017.10.1987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the unit ball B of C-2 admits complete properly embedded complex curves of any given topological type. Moreover, we provide examples containing any given closed discrete subset of B
引用
收藏
页码:1987 / 1999
页数:13
相关论文
共 22 条
[1]   Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves [J].
Alarcon, A. ;
Drnovsek, B. Drinovec ;
Forstneric, F. ;
Lopez, F. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 :851-886
[2]  
Alarcon A., 2016, J REINE ANGEW MATH
[3]   Complete bounded embedded complex curves in C2 [J].
Alarcon, Antonio ;
Lopez, Francisco J. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (08) :1675-1705
[4]  
Alarcón A, 2013, MATH ANN, V355, P429, DOI 10.1007/s00208-012-0790-4
[5]   Every bordered Riemann surface is a complete proper curve in a ball [J].
Alarcon, Antonio ;
Forstneric, Franc .
MATHEMATISCHE ANNALEN, 2013, 357 (03) :1049-1070
[6]   Proper Holomorphic Embeddings of Riemann Surfaces with Arbitrary Topology into C2 [J].
Alarcon, Antonio ;
Lopez, Francisco J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1794-1805
[7]  
[Anonymous], 1958, Pacific J. Math, DOI 10.2140/pjm.1958.8.29
[8]  
Bell S. R., 1990, ENCY MATH SCI, V69, P1
[9]   Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls [J].
Drnovsek, Barbara Drinovec .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) :705-713
[10]   Embedding holomorphic discs through discrete sets [J].
Forstneric, F ;
Globevnik, J ;
Stensones, B .
MATHEMATISCHE ANNALEN, 1996, 305 (03) :559-569