A LONG-TIME STABLE FULLY DISCRETE APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH INERTIAL TERM

被引:0
作者
Grasselli, Maurizio [1 ]
Lecoq, Nicolas [2 ]
Pierre, Morgan [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Rouen, Grp Phys Mat, CNRS, UMR 6634, F-76801 St Etienne, France
[3] Univ Poitiers, Lab Math & Applicat, CNRS, UMR 6086, F-86962 Futuroscope, France
关键词
Second-order gradient-like flow; Cahn-Hilliard equation; mixed finite elements; discrete negative norms; numerical integration; Lojasiewicz inequality; SPINODAL DECOMPOSITION; BINARY-SYSTEM; HYPERBOLIC RELAXATION; SPLITTING METHOD; SMOOTH; 3D;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Lyapunov stability of a time and space discretization of the Cahn-Hilliard equation with inertial term. The space discretization is a mixed (or "splitting") finite element method with numerical integration which includes a standard finite difference approximation. The time discretization is the backward Euler scheme. The smallness assumption on the time step does not depend on the mesh step.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 23 条
  • [1] [Anonymous], 1989, Internat. Ser. Numer. Math, DOI DOI 10.1007/978-3-0348-9148-6_3
  • [2] Singularly perturbed 1D Cahn-Hilliard equation revisited
    Bonfoh, Ahmed
    Grasselli, Maurizio
    Miranville, Alain
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (06): : 663 - 695
  • [3] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [4] CIARLET P. G., 2002, Classics in Appl. Math., V40
  • [5] Debussche A., 1991, ASYMPTOTIC ANAL, V4, P161, DOI [10.3233/ASY-1991-4202, DOI 10.3233/ASY-1991-4202]
  • [6] A 2ND-ORDER SPLITTING METHOD FOR THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    FRENCH, DA
    MILNER, FA
    [J]. NUMERISCHE MATHEMATIK, 1989, 54 (05) : 575 - 590
  • [7] ERROR-ESTIMATES WITH SMOOTH AND NONSMOOTH DATA FOR A FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    LARSSON, S
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 603 - 630
  • [8] ERN A, 2002, ELEMENTS FINIS THEOR
  • [9] Analysis of the dispersion relation in spinodal decomposition of a binary system
    Galenko, P.
    Lebedev, V.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) : 821 - 827
  • [10] Diffuse-interface model for rapid phase transformations in nonequilibrium systems
    Galenko, P
    Jou, D
    [J]. PHYSICAL REVIEW E, 2005, 71 (04)