Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators

被引:35
作者
Díaz-Ramos, JC [1 ]
García-Río, E [1 ]
Vázquez-Lorenzo, R [1 ]
机构
[1] Univ Santiago de Compostela, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
关键词
Jacobi operator; Jordan-Osserman; Walker metric; self-dual and anti-self-dual Weyl tensor;
D O I
10.1007/BF02930986
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete description of Osserman four-manifolds whose Jacobi operators have a nonzero double root of the minimal polynomial is given.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 24 条
[1]  
ALEKSEEVSKI DM, 1999, ARCH MATH BRNO, V35, P193
[2]   Osserman pseudo-Riemannian manifolds of signature (2,2) [J].
Blazic, N ;
Bokan, N ;
Rakic, Z .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 :367-395
[3]   A note on Osserman Lorentzian manifolds [J].
Blazic, N ;
Bokan, N ;
Gilkey, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :227-230
[4]  
BLAZIC N, IN PRESS CURVATURE S
[5]   Pseudo-Riemannian manifolds with simple Jacobi operators [J].
Bonome, A ;
Castro, R ;
García-Río, E ;
Hervella, L ;
Vázquez-Lorenzo, R .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) :847-875
[6]   Bochner-Kahler metrics [J].
Bryant, RL .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :623-715
[7]   Curvature properties of four-dimensional Walker metrics [J].
Chaichi, M ;
García-Río, E ;
Matsushita, Y .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (03) :559-577
[8]  
CHI QS, 1988, J DIFFER GEOM, V28, P187
[9]  
Cruceanu V, 1996, ROCKY MT J MATH, V26, P83, DOI 10.1216/rmjm/1181072105
[10]  
DIAZRAMOS JC, IN PRESS DIFFERENTIA