Pulsar Candidate Sifting Using Multi-input Convolution Neural Networks

被引:10
作者
Lin, Haitao [1 ,2 ]
Li, Xiangru [3 ]
Zeng, Qingguo [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Hanshan Normal Univ, Sch Math & Stat, Chaozhou 521041, Peoples R China
[3] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulsars; Astronomy data analysis; Convolutional neural networks; SELECTION; CLASSIFICATION;
D O I
10.3847/1538-4357/aba838
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Pulsar candidate sifting is an essential process for discovering new pulsars. It aims to search for the most promising pulsar candidates from an all-sky survey, such as the High Time Resolution Universe (HTRU), Green Bank Northern Celestial Cap (GBNCC), Five-hundred-meter Aperture Spherical Radio Telescope, etc. Recently, machine learning (ML) has become a hot topic in investigations of pulsar candidate sifting. However, one typical challenge in ML for pulsar candidate sifting comes from the learning difficulty arising from the high class imbalance between the observed numbers of pulsars and non-pulsars. Therefore, this work proposes a novel framework for candidate sifting, named Multi-input Convolutional Neural Networks (MICNN). MICNN is an architecture of deep learning with four diagnostic plots of a pulsar candidate as its inputs. To train our MICNN on a highly class-imbalanced data set, a novel image augmentation technique is proposed, as well as a three-stage training strategy. Experiments on observations from HTRU and GBNCC show the effectiveness and robustness of these proposed techniques. In the experiments on HTRU, our MICNN model achieves a recall rate of 0.962 and a precision rate of 0.967 even in a highly class-imbalanced test data set.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] Azulay Aharon., 2018, 180512177 ARXIV
  • [2] Prospects for detecting dark matter halo substructure with pulsar timing
    Baghram, Shant
    Afshordi, Niayesh
    Zurek, Kathryn M.
    [J]. PHYSICAL REVIEW D, 2011, 84 (04):
  • [3] The High Time Resolution Universe Pulsar Survey - VI. An artificial neural network and timing of 75 pulsars
    Bates, S. D.
    Bailes, M.
    Barsdell, B. R.
    Bhat, N. D. R.
    Burgay, M.
    Burke-Spolaor, S.
    Champion, D. J.
    Coster, P.
    D'Amico, N.
    Jameson, A.
    Johnston, S.
    Keith, M. J.
    Kramer, M.
    Levin, L.
    Lyne, A.
    Milia, S.
    Ng, C.
    Nietner, C.
    Possenti, A.
    Stappers, B.
    Thornton, D.
    van Straten, W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (02) : 1052 - 1065
  • [4] The LOFAR pilot surveys for pulsars and fast radio transients
    Coenen, Thijs
    van Leeuwen, Joeri
    Hessels, Jason W. T.
    Stappers, Ben W.
    Kondratiev, Vladislav I.
    Alexov, A.
    Breton, R. P.
    Bilous, A.
    Cooper, S.
    Falcke, H.
    Fallows, R. A.
    Gajjar, V.
    Griessmeier, J-M.
    Hassall, T. E.
    Karastergiou, A.
    Keane, E. F.
    Kramer, M.
    Kuniyoshi, M.
    Noutsos, A.
    Oslowski, S.
    Pilia, M.
    Serylak, M.
    Schrijvers, C.
    Sobey, C.
    ter Veen, S.
    Verbiest, J.
    Weltevrede, P.
    Wijnholds, S.
    Zagkouris, K.
    van Amesfoort, A. S.
    Anderson, J.
    Asgekar, A.
    Avruch, I. M.
    Bell, M. E.
    Bentum, M. J.
    Bernardi, G.
    Best, P.
    Bonafede, A.
    Breitling, F.
    Broderick, J.
    Brueggen, M.
    Butcher, H. R.
    Ciardi, B.
    Corstanje, A.
    Deller, A.
    Duscha, S.
    Eisloeffel, J.
    Fender, R.
    Ferrari, C.
    Frieswijk, W.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 570
  • [5] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [6] ARECIBO PULSAR SURVEY USING ALFA: PROBING RADIO PULSAR INTERMITTENCY AND TRANSIENTS
    Deneva, J. S.
    Cordes, J. M.
    McLaughlin, M. A.
    Nice, D. J.
    Lorimer, D. R.
    Crawford, F.
    Bhat, N. D. R.
    Camilo, F.
    Champion, D. J.
    Freire, P. C. C.
    Edel, S.
    Kondratiev, V. I.
    Hessels, J. W. T.
    Jenet, F. A.
    Kasian, L.
    Kaspi, V. M.
    Kramer, M.
    Lazarus, P.
    Ransom, S. M.
    Stairs, I. H.
    Stappers, B. W.
    van Leeuwen, J.
    Brazier, A.
    Venkataraman, A.
    Zollweg, J. A.
    Bogdanov, S.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 703 (02) : 2259 - 2274
  • [7] Selection of radio pulsar candidates using artificial neural networks
    Eatough, R. P.
    Molkenthin, N.
    Kramer, M.
    Noutsos, A.
    Keith, M. J.
    Stappers, B. W.
    Lyne, A. G.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (04) : 2443 - 2450
  • [8] Pulsar candidate classification using generative adversary networks
    Guo, Ping
    Duan, Fuqing
    Wang, Pei
    Yao, Yao
    Yin, Qian
    Xin, Xin
    Li, Di
    Qian, Lei
    Wang, Shen
    Pan, Zhichen
    Zhang, Lei
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 5424 - 5439
  • [9] A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions
    Kaur, Harsurinder
    Pannu, Husanbir Singh
    Malhi, Avleen Kaur
    [J]. ACM COMPUTING SURVEYS, 2019, 52 (04)
  • [10] The High Time Resolution Universe Pulsar Survey - I. System configuration and initial discoveries
    Keith, M. J.
    Jameson, A.
    van Straten, W.
    Bailes, M.
    Johnston, S.
    Kramer, M.
    Possenti, A.
    Bates, S. D.
    Bhat, N. D. R.
    Burgay, M.
    Burke-Spolaor, S.
    D'Amico, N.
    Levin, L.
    McMahon, Peter L.
    Milia, S.
    Stappers, B. W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 409 (02) : 619 - 627