Free boundary problems in shock reflection/diffraction and related transonic flow problems

被引:8
作者
Chen, Gui-Qiang [1 ]
Feldman, Mikhail [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 373卷 / 2050期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
shock wave; transonic flow; von Neumann's problem; Lighthill's problem; equation of mixed elliptic-hyperbolic type; global entropy solutions; 2-DIMENSIONAL RIEMANN PROBLEMS; WEAK SHOCK; SUPERSONIC-FLOW; MACH REFLECTION; GAS-DYNAMICS; STABILITY; EXISTENCE; EQUATIONS; DIFFRACTION; UNIQUENESS;
D O I
10.1098/rsta.2014.0276
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection-diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws.
引用
收藏
页数:20
相关论文
共 59 条
[1]  
[Anonymous], 1963, COLLECTED WORKS
[2]  
[Anonymous], PREPRINT
[3]  
Bae M, PREPRINT
[4]   PRANDTL-MEYER REFLECTION FOR SUPERSONIC FLOW PAST A SOLID RAMP [J].
Bae, Myoungjean ;
Chen, Gui-Qiang ;
Feldman, Mikhail .
QUARTERLY OF APPLIED MATHEMATICS, 2013, 71 (03) :583-600
[5]   Transonic Shocks in Multidimensional Divergent Nozzles [J].
Bae, Myoungjean ;
Feldman, Mikhail .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (03) :777-840
[6]   Regularity of solutions to regular shock reflection for potential flow [J].
Bae, Myoungjean ;
Chen, Gui-Qiang ;
Feldman, Mikhail .
INVENTIONES MATHEMATICAE, 2009, 175 (03) :505-543
[7]  
Bargman V., 1945, 5117 OFF SCI RES DEV
[8]  
Ben-Dor G., 1991, Shock Wave Reflection Phenomena
[9]  
Bers L., 1958, MATH ASPECTS SUBSONI, V3
[10]  
Busemann A., 1931, Handbuch der Experimentalphysik, V4