A complex networks approach for data clustering

被引:22
作者
de Arruda, Guilherme F. [1 ]
Costa, Luciano da Fontoura [2 ]
Rodrigues, Francisco A. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Clustering; Complex networks; Pattern recognition; Community; COMMUNITY STRUCTURE; RESOLUTION;
D O I
10.1016/j.physa.2012.07.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work proposes a method for data clustering based on complex networks theory. A data set is represented as a network by considering different metrics to establish the connection between each pair of objects. The clusters are obtained by taking into account five community detection algorithms. The network-based clustering approach is applied in two real-world databases and two sets of artificially generated data. The obtained results suggest that the exponential of the Minkowski distance is the most suitable metric to quantify the similarities between pairs of objects. In addition, the community identification method based on the greedy optimization provides the best cluster solution. We compare the network-based clustering approach with some traditional clustering algorithms and verify that it provides the lowest classification error rate. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:6174 / 6183
页数:10
相关论文
共 44 条
[1]  
Aeberhard S., COMP CLASSIFIERS HIG
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
Anderberg M.R., 1973, CLUSTER ANAL APPL, DOI DOI 10.1016/C2013-0-06161-0
[4]   Natural clustering: the modularity approach [J].
Angelini, L. ;
Marinazzo, D. ;
Pellicoro, M. ;
Stramaglia, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[5]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[6]   Functional Modularity of Background Activities in Normal and Epileptic Brain Networks [J].
Chavez, M. ;
Valencia, M. ;
Navarro, V. ;
Latora, V. ;
Martinerie, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[7]   Finding local community structure in networks [J].
Clauset, A .
PHYSICAL REVIEW E, 2005, 72 (02)
[8]  
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
[9]   Characterization of complex networks: A survey of measurements [J].
Costa, L. Da F. ;
Rodrigues, F. A. ;
Travieso, G. ;
Boas, P. R. Villas .
ADVANCES IN PHYSICS, 2007, 56 (01) :167-242
[10]   Analyzing and modeling real-world phenomena with complex networks: a survey of applications [J].
Costa, Luciano da Fontoura ;
Oliveira, Osvaldo N., Jr. ;
Travieso, Gonzalo ;
Rodrigues, Francisco Aparecido ;
Villas Boas, Paulino Ribeiro ;
Antiqueira, Lucas ;
Viana, Matheus Palhares ;
Correa Rocha, Luis Enrique .
ADVANCES IN PHYSICS, 2011, 60 (03) :329-412