A homeomorphism between observable pairs and conditioned invariant subspaces

被引:15
作者
Fuhrmann, PA [1 ]
Helmke, U [1 ]
机构
[1] UNIV WURZBURG,INST MATH,D-8700 WURZBURG,GERMANY
关键词
parametrization problems; conditioned invariant subspaces; geometric control; inner functions;
D O I
10.1016/S0167-6911(97)00013-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A bijective correspondence between similarity classes of observable systems (C, A) and n-codimensional conditioned invariant subspaces of a pair (C,A) is constructed that leads to a homeomorphism of the spaces. This is applied to the parametrization of inner functions of fixed McMillan degree. Proofs using state space methods as well as using polynomial models are: given. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 12 条
[1]  
BASILE G, 1973, J OPTIM THEORY APPL, V3, P306
[2]   A POLYNOMIAL CHARACTERIZATION OF (A,B)-INVARIANT AND REACHABILITY SUBSPACES [J].
EMRE, E ;
HAUTUS, MLJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (04) :420-436
[3]   DUALITY IN POLYNOMIAL-MODELS WITH SOME APPLICATIONS TO GEOMETRIC CONTROL-THEORY [J].
FUHRMANN, PA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :284-295
[4]   ALGEBRAIC SYSTEM THEORY - ANALYSTS POINT OF VIEW [J].
FUHRMANN, PA .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 301 (06) :521-540
[5]   A STUDY OF (A, B)-INVARIANT SUBSPACES VIA POLYNOMIAL-MODELS [J].
FUHRMANN, PA ;
WILLEMS, JC .
INTERNATIONAL JOURNAL OF CONTROL, 1980, 31 (03) :467-494
[6]  
FUHRMANN PA, 1979, INTEGR EQUAT OPER TH, V2, P287
[7]  
HAZEWINKEL M, 1975, LECT NOTES EC MATH S, V131, P48
[8]  
HELMKE U, 1983, REGENSBURGER MATH SC, V24
[9]  
HINRICHSEN D, 1983, SYSTEMS CONTROL LETT, V1, P192
[10]  
LINDQUIST A, 1995, SIAM J CONTROL OPTIM