THE EXISTENCE OF EQUIVARIANT PURE FREE RESOLUTIONS

被引:34
作者
Eisenbud, David [1 ]
Floystad, Gunnar [2 ]
Weyman, Jerzy [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Math Inst, N-5008 Bergen, Norway
[3] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
Pure resolution; equivariant resolution; Betti diagram; Boij-Soderberg theory; Pieri map; determinantal variety; BETTI-NUMBERS; MODULES;
D O I
10.5802/aif.2632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = K[x(1),...,x(m)] be a polynomial ring in m variables and let d = (d(0) < ... < d(m)) be a strictly increasing sequence of m + 1 integers. Boij and Soderberg conjectured the existence of graded A-modules M of finite length having pure free resolution of type d in the sense that for i = 0,...,m the i-th syzygy module of M has generators only in degree d(i). This paper provides a construction, in characteristic zero, of modules with this property that are also GL(m)-equivariant. Moreover, the construction works over rings of the form A circle times(K) B where A is a polynomial ring as above and B is an exterior algebra.
引用
收藏
页码:905 / 926
页数:22
相关论文
共 17 条
[1]  
[Anonymous], 1995, GRADUATE TEXTS MATH
[2]   HOOK YOUNG-DIAGRAMS WITH APPLICATIONS TO COMBINATORICS AND TO REPRESENTATIONS OF LIE-SUPERALGEBRAS [J].
BERELE, A ;
REGEV, A .
ADVANCES IN MATHEMATICS, 1987, 64 (02) :118-175
[3]   Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture [J].
Boij, Mats ;
Soderberg, Jonas .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :85-106
[4]   GENERIC FREE RESOLUTIONS AND A FAMILY OF GENERICALLY PERFECT IDEALS [J].
BUCHSBAUM, DA ;
EISENBUD, D .
ADVANCES IN MATHEMATICS, 1975, 18 (03) :245-301
[5]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[6]   VERY SIMPLE PROOF OF BOTTS THEOREM [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1976, 33 (03) :271-272
[7]   Fitting's Lemma for Z/2-graded modules [J].
Eisenbud, D ;
Weyman, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (11) :4451-4473
[8]  
Eisenbud D, 2010, MATH RES LETT, V17, P267
[9]  
Eisenbud D, 2009, J AM MATH SOC, V22, P859
[10]   Exterior algebra resolutions arising from homogeneous bundles [J].
Floystad, G .
MATHEMATICA SCANDINAVICA, 2004, 94 (02) :191-201