Synergistic antileukemic interactions between 2-medroxyestradiol (2-ME) and histone deacetylase inhibitors involve Akt down-regulation and oxidative stress

被引:31
作者
Gao, N
Rahmani, M
Shi, XL
Dent, P
Grant, S
机构
[1] Virginia Commonwealth Univ, Med Coll Virginia, Dept Med, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Med Coll Virginia, Dept Biochem, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Med Coll Virginia, Dept Pharmacol, Richmond, VA 23298 USA
[4] Virginia Commonwealth Univ, Med Coll Virginia, Dept Radiat Oncol, Richmond, VA 23298 USA
[5] NIOSH, Hlth Effects Lab Div, Morgantown, WV USA
关键词
D O I
10.1182/blood-2005-06-2409
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Interactions between the endogenous estradiol metabolite 2-medroxyestradiol (2-ME) and histone deacetylase inhibitors (HDACls) have been investigated in human leukemia cells. Coadministration of subtoxic or marginally toxic concentrations of 2-ME and SAHA or sodium butyrate in diverse human leukemia-cell types resulted in a marked increase in oxidative damage (eg, generation of reactive oxygen species [ROSs]), mitochondrial injury (eg, cytochrome c release and Bax translocation), caspase activation, and apoptosis. These interactions were also noted in primary human leukemia cells but not in normal bone marrow CD34(+) cells. Synergistic interactions between these agents were associated with inactivation of Akt and activation of c-Jun N-terminal kinase (JNK). Essentially all of these events were reversed by free radical scavengers such as the manganese superoxide dismutase (MnSOD) mimetic TBAP and catalase. Notably, treatment with 2-ME/HDACIs resulted in downregulation of thioredoxin, MnSOD, and glutathione peroxidase. Enforced activation of Akt blocked 2-ME/HDACI-mediated mitochondrial injury, caspase activation, and JNK up-regulation, but not generation of IROSs. Pharmacologic or genetic (siRNA) interruption of the JNK pathway also significantly attenuated the lethality of this regimen. Together, these findings support a model in which antileukemic synergism between 2-ME and HDACIs stems primarily from induction of oxidative damage, leading in turn to Akt inactivation and JNK activation, culminating in mitochondrial injury and apoptosis. They also raise the possibility that these events may preferentially occur in leukemic versus normal hematopoietic cells.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 56 条
[1]   Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) [J].
Almenara, J ;
Rosato, R ;
Grant, S .
LEUKEMIA, 2002, 16 (07) :1331-1343
[2]   Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90 - A novel basis for antileukemia activity of histone deacetylase inhibitors [J].
Bali, P ;
Pranpat, M ;
Bradner, J ;
Balasis, M ;
Fiskus, W ;
Guo, F ;
Rocha, K ;
Kumaraswamy, S ;
Boyapalle, S ;
Atadja, P ;
Seto, E ;
Bhalla, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (29) :26729-26734
[3]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[4]   The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin [J].
Butler, LM ;
Zhou, XB ;
Xu, WS ;
Scher, HI ;
Rifkind, RA ;
Marks, PA ;
Richon, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11700-11705
[5]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[6]   QUANTITATIVE-ANALYSIS OF DOSE-EFFECT RELATIONSHIPS - THE COMBINED EFFECTS OF MULTIPLE-DRUGS OR ENZYME-INHIBITORS [J].
CHOU, TC ;
TALALAY, P .
ADVANCES IN ENZYME REGULATION, 1984, 22 :27-55
[7]  
Culotta VC, 2000, CURR TOP CELL REGUL, V36, P117
[8]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[9]   2-methoxyestradiol-induced apoptosis in prostate cancer cells requires Smad7 [J].
Davoodpour, P ;
Landström, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (15) :14773-14779
[10]   Novel role for JNK as a stress-activated Bcl2 kinase [J].
Deng, XM ;
Xiao, L ;
Lang, WH ;
Gao, FQ ;
Ruvolo, P ;
May, WS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23681-23688