Weak {2}-domination number of Cartesian products of cycles

被引:18
作者
Li, Zepeng [1 ,2 ]
Shao, Zehui [3 ,4 ]
Xu, Jin [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Sichuan, Peoples R China
[4] Chengdu Univ, Res Inst Big Data, Chengdu 610106, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Roman domination; Rainbow domination; Weak {2}-domination; Cartesian product graph; 2-RAINBOW DOMINATION NUMBER; ROMAN DOMINATION; PLANAR GRAPHS; RAINBOW DOMINATION; SETS;
D O I
10.1007/s10878-017-0157-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a graph , a weak -dominating function has the property that for every vertex with , where N(v) is the set of neighbors of v in G. The weight of a weak -dominating function f is the sum and the minimum weight of a weak -dominating function is the weak -domination number. In this paper, we introduce a discharging approach and provide a short proof for the lower bound of the weak -domination number of , which was obtained by StE (c) pieA", et al. (Discrete Appl Math 170:113-116, 2014). Moreover, we obtain the weak -domination numbers of and .
引用
收藏
页码:75 / 85
页数:11
相关论文
共 18 条
  • [1] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [2] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [3] Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five
    Bujtas, Csilla
    Klavzar, Sandi
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 511 - 519
  • [4] EXTREMAL PROBLEMS FOR ROMAN DOMINATION
    Chambers, Erin W.
    Kinnersley, Bill
    Prince, Noah
    West, Douglas B.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1575 - 1586
  • [5] Roman {2}-domination
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    McRae, Alice A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 204 : 22 - 28
  • [6] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [7] On the Roman domination number of a graph
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3447 - 3451
  • [8] Goddard W, 2002, J GRAPH THEOR, V40, P1, DOI 10.1002/jgt.10027
  • [9] Haynes TW., 1998, FUNDAMENTALS DOMINAT
  • [10] On dominating sets of maximal outerplanar and planar graphs
    Li, Zepeng
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 198 : 164 - 169