On the analysis and application of an ion size-modified Poisson-Boltzmann equation

被引:48
|
作者
Li, Jiao [1 ]
Ying, Jinyong [2 ]
Xie, Dexuan [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53211 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Size-modified Poisson-Boltzmann equation; Electrostatic free energy; PDE-constrained variational methods; Electric double layer; FINITE-ELEMENT; BIOMOLECULAR ELECTROSTATICS; DECOMPOSITION; MINIMIZATION; PROTEIN; ATMOSPHERE;
D O I
10.1016/j.nonrwa.2018.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson-Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson-Boltzmann equation in the prediction of ionic concentrations. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 50 条