On the analysis and application of an ion size-modified Poisson-Boltzmann equation

被引:48
|
作者
Li, Jiao [1 ]
Ying, Jinyong [2 ]
Xie, Dexuan [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53211 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Size-modified Poisson-Boltzmann equation; Electrostatic free energy; PDE-constrained variational methods; Electric double layer; FINITE-ELEMENT; BIOMOLECULAR ELECTROSTATICS; DECOMPOSITION; MINIMIZATION; PROTEIN; ATMOSPHERE;
D O I
10.1016/j.nonrwa.2018.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson-Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson-Boltzmann equation in the prediction of ionic concentrations. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 50 条
  • [31] A MODIFIED POISSON-BOLTZMANN STUDY OF THE SINGLET ION DISTRIBUTION AT CONTACT WITH THE ELECTRODE FOR A PLANAR ELECTRIC DOUBLE LAYER
    Silvestre-Alcantara, Whasington
    Bhuiyan, Lutful B.
    Outhwaite, Christopher W.
    Henderson, Douglas
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2010, 75 (04) : 425 - 446
  • [32] Reversed electrophoretic mobility of a spherical colloid in the Modified Poisson-Boltzmann approach
    Gonzalez-Tovar, Enrique
    Bhuiyan, Lutful Bari
    Outhwaite, Christopher W.
    Lozada-Cassou, Marcelo
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 228 : 160 - 167
  • [33] An exact solution of the nonlinear Poisson-Boltzmann equation in parallel-plate geometry
    Zhang, Wenyao
    Wang, Qiuwang
    Zeng, Min
    Zhao, Cunlu
    COLLOID AND POLYMER SCIENCE, 2018, 296 (11) : 1917 - 1923
  • [34] Generalized Poisson-Boltzmann Equation Taking into Account Ionic Interaction and Steric Effects
    Liu Xin-Min
    Li Hang
    Li Rui
    Tian Rui
    Xu Chen-Yang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (03) : 437 - 440
  • [35] DNA-dendrimer nanocluster electrostatics prediction with the nonlinear Poisson-Boltzmann equation
    Nikakhtar, A
    Nasehzadeh, A
    Naghibi-Beidokhti, H
    Mansoori, GA
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2005, 2 (03) : 378 - 384
  • [36] A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation
    Chaudhry, Jehanzeb Hameed
    Bond, Stephen D.
    Olson, Luke N.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 4892 - 4902
  • [37] Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes
    Cortis, CM
    Friesner, RA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1997, 18 (13) : 1591 - 1608
  • [38] Accurate estimation of electrostatic binding energy with Poisson-Boltzmann equation solver DelPhi program
    Li, Anbang
    Gao, Kaifu
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2016, 15 (08)
  • [39] A NEW LINEAR POISSON-BOLTZMANN EQUATION AND FINITE ELEMENT SOLVER BY SOLUTION DECOMPOSITION APPROACH
    Li, Jiao
    Xie, Dexuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (02) : 315 - 325
  • [40] ARGOS: An adaptive refinement goal-oriented solver for the linearized Poisson-Boltzmann equation
    Nakov, Svetoslav
    Sobakinskaya, Ekaterina
    Renger, Thomas
    Kraus, Johannes
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (26) : 1832 - 1860