On the analysis and application of an ion size-modified Poisson-Boltzmann equation

被引:48
|
作者
Li, Jiao [1 ]
Ying, Jinyong [2 ]
Xie, Dexuan [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53211 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Size-modified Poisson-Boltzmann equation; Electrostatic free energy; PDE-constrained variational methods; Electric double layer; FINITE-ELEMENT; BIOMOLECULAR ELECTROSTATICS; DECOMPOSITION; MINIMIZATION; PROTEIN; ATMOSPHERE;
D O I
10.1016/j.nonrwa.2018.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson-Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson-Boltzmann equation in the prediction of ionic concentrations. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 50 条
  • [21] A Boundary-Integral Approach for the Poisson-Boltzmann Equation with Polarizable Force Fields
    Cooper, Christopher D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (18) : 1680 - 1692
  • [22] A new discontinuous Galerkin method for the nonlinear Poisson-Boltzmann equation
    Deng, Weishan
    Zhufu, Xiaohe
    Xu, Jin
    Zhao, Shan
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 126 - 132
  • [23] Modified Poisson-Boltzmann theory for polyelectrolytes in monovalent salt solutions with finite-size ions
    Vahid, Hossein
    Scacchi, Alberto
    Yang, Xiang
    Ala-Nissila, Tapio
    Sammalkorpi, Maria
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (21)
  • [24] Poisson-Boltzmann theory with non-linear ion correlations
    Su, Mao
    Xu, Zhijie
    Wang, Yanting
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (35)
  • [25] An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for restricted primitive model electrolytes
    Ulloa-Davila, E. O.
    Bhuiyan, L. B.
    CONDENSED MATTER PHYSICS, 2017, 20 (04)
  • [26] An Investigation of Physics Informed Neural Networks to Solve the Poisson-Boltzmann Equation in Molecular Electrostatics
    Achondo, Martin A.
    Chaudhry, Jehanzeb H.
    Cooper, Christopher D.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (07) : 3726 - 3744
  • [27] The Dielectric Boundary Force in Molecular Solvation of the Generalized Poisson-Boltzmann Equation with Ionic Sizes
    Zhang, Qingxia
    Zhang, Zhengfang
    He, Mingyan
    Shao, Xinping
    Chen, Weifeng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2023, 20 (04)
  • [28] Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications
    Lu, B. Z.
    Zhou, Y. C.
    Holst, M. J.
    McCammon, J. A.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) : 973 - 1009
  • [29] Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation
    Kwon, In
    Kwak, Do Y.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (03) : 928 - 946
  • [30] Comparison of exclusion volume corrections to the Poisson-Boltzmann equation for inhomogeneous electrolytes
    Bhuiyan, L. B.
    Outhwaite, C. W.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 331 (02) : 543 - 547