Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature

被引:492
|
作者
Tu, X. [1 ]
Whitehead, J. C. [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Plasma-catalysis; Synergistic effect; Dry reforming; Hydrogen; Optical emission spectroscopy; CARBON-DIOXIDE; SYNTHESIS GAS; HYDROGEN-PRODUCTION; HIGHER HYDROCARBONS; NONTHERMAL PLASMA; DIRECT CONVERSION; ARC PLASMA; COMBINATION; DECOMPOSITION; DESTRUCTION;
D O I
10.1016/j.apcatb.2012.06.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A coaxial dielectric barrier discharge (DBD) reactor has been developed for plasma-catalytic dry reforming of CH4 into syngas over different Ni/gamma-Al2O3 catalysts. Three different packing methods are introduced into the single-stage plasma-catalysis system to investigate the influence of catalysts packed into the plasma area on the physical properties of the DBD and determine consequent synergistic effects in the plasma-catalytic dry reforming reactions. Compared to the fully packed reactor, which strongly changes the discharge mode due to a significant reduction in the discharge volume, partially packing the Ni/-gamma-Al2O3 catalyst either in a radial or axial direction into the discharge gap still shows strong filamentary discharge and significantly enhances the physical and chemical interactions between the plasma and catalyst. Optical emission spectra of the discharge demonstrate the presence of reactive species (CO, CH, C-2, CO2+ and N-2(+)) in the plasma dry reforming of methane. We also find the presence of the Ni/gamma-Al2O3 catalyst in the plasma has a weak effect on the gas temperature of the CH4/CO2 discharge. The synergistic effect resulting from the integration of the plasma and catalyst is clearly observed when the 10 wt% Ni/gamma-Al2O3 catalyst in flake form calcined at 300 degrees C is partially packed in the plasma, showing both the CH4 conversion (56.4%) and H-2 yield (17.5%) are almost doubled. The synergy of plasma-catalysis also contributes to a significant enhancement in the energy efficiency for greenhouse gas conversion. This synergistic effect from the combination of low temperature plasma and solid catalyst can be attributed to both strong plasma-catalyst interactions and high activity of the Ni/gamma-Al2O3 catalyst calcined at a low temperature. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [31] Comparison of methane reforming routes for hydrogen production using dielectric barrier discharge plasma-catalysis
    Garcia-Villalva, Rolando
    Biset-Peiro, Marti
    Alarcon, Andreina
    Bacariza, Carmen
    Murcia-Lopez, Sebastian
    Guilera, Jordi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 1367 - 1375
  • [32] Integrated Process of Coal Pyrolysis with CO2 Reforming of Methane by Dielectric Barrier Discharge Plasma
    He, Xinfu
    Jin, Lijun
    Wang, Ding
    Zhao, Yunpeng
    Zhu, Shengwei
    Hu, Haoquan
    ENERGY & FUELS, 2011, 25 (09) : 4036 - 4042
  • [33] Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming
    Wang Hao
    Song Ling-Jun
    Li Xing-Hu
    Yue Li-Meng
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (07) : 1406 - 1412
  • [34] Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor
    Andersen, J. A.
    Christensen, J. M.
    ostberg, M.
    Bogaerts, A.
    Jensen, A. D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (75) : 32081 - 32091
  • [35] Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3
    Amin Aziznia
    Hamid Reza Bozorgzadeh
    Naser Seyed-Matin
    Morteza Baghalha
    Ali Mohamadalizadeh
    Journal of Energy Chemistry, 2012, (04) : 466 - 475
  • [36] Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature
    Yap, David
    Tatibouet, Jean-Michel
    Batiot-Dupeyrat, Catherine
    CATALYSIS TODAY, 2018, 299 : 263 - 271
  • [37] Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor
    Zhu, Xinbo
    Gao, Xiang
    Qin, Rui
    Zeng, Yuxuan
    Qu, Ruiyang
    Zheng, Chenghang
    Tu, Xin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 170 : 293 - 300
  • [38] Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/(sic)-Al2O3-MgO nanocomposite
    Khoja, Asif Hussain
    Tahir, Muhammad
    Amin, Nor Aishah Saidina
    FUEL PROCESSING TECHNOLOGY, 2018, 178 : 166 - 179
  • [39] Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling
    Andersen, J. A.
    Holm, M. C.
    van't Veer, K.
    Christensen, J. M.
    Ostberg, M.
    Bogaerts, A.
    Jensen, A. D.
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [40] Nanosecond pulsed dielectric barrier discharge plasma-catalytic removal of HCHO in humid air
    Zhang, Shuai
    Wang, Wenchun
    Zhang, Li
    Zhao, Zilu
    Yang, Dezheng
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2017, 78 (02)