Polymeric Graphene Bulk Materials with a 3D Cross-Linked Monolithic Graphene Network

被引:105
作者
Chen, Wangqiao [1 ,2 ,3 ,4 ]
Xiao, Peishuang [1 ,2 ,3 ]
Chen, Honghui [1 ,2 ,3 ]
Zhang, Hongtao [1 ,2 ,3 ]
Zhang, Qichun [4 ]
Chen, Yongsheng [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Inst Elementoorgan Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
cross-linked materials; graphene; networks; synthesis; theory; 3-DIMENSIONAL GRAPHENE; SURFACE-AREA; MICROWAVE-ABSORPTION; CARBON MATERIALS; DOPED GRAPHENE; HOT-ELECTRONS; BROAD-BAND; OXIDE; PERFORMANCE; ENERGY;
D O I
10.1002/adma.201802403
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although many great potential applications are proposed for graphene, till now none are yet realized as a stellar application. The most challenging issue for such practical applications is to figure out how to prepare graphene bulk materials while maintaining the unique two-dimensional (2D) structure and the many excellent properties of graphene sheets. Herein, such polymeric graphene bulk materials containing three-dimensional (3D) cross-linked networks with graphene sheets as the building unit are reviewed. The theoretical research on various proposed structures of graphene bulk materials is summarized first. Then, the synthesis or fabrication of these graphene materials is described, which comprises mainly two approaches: chemical vapor deposition and cross-linking using graphene oxide directly. Finally, some exotic and exciting potential applications of these graphene bulk materials are presented.
引用
收藏
页数:15
相关论文
共 188 条
[1]   Carbon nanomaterials for non-volatile memories [J].
Ahn, Ethan C. ;
Wong, H. -S. Philip ;
Pop, Eric .
NATURE REVIEWS MATERIALS, 2018, 3 (03)
[2]   Bio-lnspired Borate Cross-Linking in Ultra-Stiff Graphene Oxide Thin Films [J].
An, Zhi ;
Compton, Owen C. ;
Putz, Karl W. ;
Brinson, L. Catherine ;
Nguyen, SonBinh T. .
ADVANCED MATERIALS, 2011, 23 (33) :3842-+
[3]  
[Anonymous], 2017, CIVIL ENG, V87, P38
[4]  
[Anonymous], NANO LETT, DOI DOI 10.1021/nl802810g
[5]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[6]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[7]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/NPHOTON.2011.102, 10.1038/nphoton.2011.102]
[8]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[9]   A carbon science perspective in 2018: Current achievements and future challenges [J].
Bianco, Alberto ;
Chen, Yongsheng ;
Chen, Yuan ;
Ghoshal, Debjit ;
Hurt, Robert H. ;
Kim, Yoong Ahm ;
Koratkar, Nikhil ;
Meunier, Vincent ;
Terrones, Mauricio .
CARBON, 2018, 132 :785-801
[10]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]