共 51 条
Facile Synthesis of Size-Tunable Silver Nanoparticles by Heteroepitaxial Growth Method for Efficient NIR SERS
被引:12
作者:
Tharion, Joseph
[1
]
Satija, Jitendra
[2
]
Mukherji, Soumyo
[1
,3
,4
]
机构:
[1] IIT, Dept Biosci & Bioengn, WRCBB, Bombay 400076, Maharashtra, India
[2] VIT Univ, Sch Biosci & Technol, Vellore 632014, Tamil Nadu, India
[3] IIT, Ctr Excellence Nanoelect, Bombay 400076, Maharashtra, India
[4] IIT, Ctr Res Nanotechnol & Sci, Bombay 400076, Maharashtra, India
来源:
关键词:
Silver nanoparticles;
Localized surface plasmon resonance;
Surface-enhanced Raman scattering;
Heteroepitaxial growth;
Sensor;
ENHANCED-RAMAN-SCATTERING;
SEED-MEDIATED GROWTH;
OPTICAL-PROPERTIES;
GOLD NANOPARTICLES;
GREEN SYNTHESIS;
POLYOL PROCESS;
REDUCTION;
NANOWIRES;
FILM;
NM;
D O I:
10.1007/s11468-014-9862-5
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We report a rapid and facile method to synthesize highly monodispersed silver nanoparticles (AgNP) by heteroepitaxial growth method using gold seed particles (size similar to 2 nm). Silver was deposited on gold seed particles by Tollen's reaction. The presence of seed particles provided good control on the morphology and size distribution of AgNP, achieving the standard deviation in size a parts per thousand currency sign11 %. The real-time kinetics of AgNP formation revealed that the presence of gold seed particles increased the reaction rate by 7-fold compared to seedless approach. The size and extinction maxima of AgNP were tunable by varying the gold seed particles to silver molar ratio. This new heteroepitaxial growth method of AgNP synthesis is simple, fast (completing the reaction within 3 min), and eco-friendly to yield monodispersed nanoparticles. Further, these AgNP were used to develop efficient surface-enhanced Raman scattering (SERS) substrates for sensing applications which showed good repeatability and significantly improved enhancement factors in the near-infrared (NIR) region.
引用
收藏
页码:753 / 763
页数:11
相关论文