NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction

被引:36
作者
Zha, Ruyi [1 ]
Zhang, Yanhao [1 ]
Li, Hongdong [1 ]
机构
[1] Australian Natl Univ, Canberra, Australia
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI | 2022年 / 13436卷
关键词
CBCT; Sparse view; Implicit neural representation; BEAM COMPUTED-TOMOGRAPHY; IMAGE-RECONSTRUCTION; CT;
D O I
10.1007/978-3-031-16446-0_42
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction (Cone Beam Computed Tomography) that requires no external training data. Specifically, the desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network. We synthesize projections discretely and train the network by minimizing the error between real and synthesized projections. A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details. This encoder outperforms the commonly used frequency-domain encoder in terms of having higher performance and efficiency, because it exploits the smoothness and sparsity of human organs. Experiments have been conducted on both human organ and phantom datasets. The proposed method achieves state-of-the-art accuracy and spends reasonably short computation time.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 28 条
  • [1] Learned Primal-Dual Reconstruction
    Adler, Jonas
    Oktem, Ozan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1322 - 1332
  • [2] SIMULTANEOUS ALGEBRAIC RECONSTRUCTION TECHNIQUE (SART) - A SUPERIOR IMPLEMENTATION OF THE ART ALGORITHM
    ANDERSEN, AH
    KAK, AC
    [J]. ULTRASONIC IMAGING, 1984, 6 (01) : 81 - 94
  • [3] Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
    Anirudh, Rushil
    Kim, Hyojin
    Thiagarajan, Jayaraman J.
    Mohan, K. Aditya
    Champley, Kyle
    Bremer, Timo
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6343 - 6352
  • [4] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [5] TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction
    Biguri, Ander
    Dosanjh, Manjit
    Hancock, Steven
    Soleimani, Manuchehr
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2016, 2 (05):
  • [6] Chen H, 2018, Arxiv, DOI arXiv:1707.09636
  • [7] PRACTICAL CONE-BEAM ALGORITHM
    FELDKAMP, LA
    DAVIS, LC
    KRESS, JW
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (06): : 612 - 619
  • [8] Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol
    Gao, Yang
    Bian, Zhaoying
    Huang, Jing
    Zhang, Yunwan
    Niu, Shanzhou
    Feng, Qianjin
    Chen, Wufan
    Liang, Zhengrong
    Ma, Jianhua
    [J]. OPTICS EXPRESS, 2014, 22 (12): : 15190 - 15210
  • [9] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [10] Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network
    Kang, Eunhee
    Chang, Won
    Yoo, Jaejun
    Ye, Jong Chul
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1358 - 1369