A BOUNDEDNESS CRITERION FOR TOEPLITZ OPERATORS IN WEIGHTED SOBOLEV SPACES OF HOLOMORPHIC FUNCTIONS ON THE POLYDISK

被引:0
作者
Shamoyan, F. A. [1 ]
机构
[1] Bryansk State Univ, Bryansk, Russia
基金
俄罗斯基础研究基金会;
关键词
unit torus; holomorphic function; Sobolev space; Toeplitz operator; harmonic function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a full description of the summable functions h on the torus which admit pluriharmonic continuation to the unit polydisk for which the Toeplitz operator with symbol h is a bounded operator in the weighted Sobolev spaces of holomorphic functions.
引用
收藏
页码:554 / 572
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 2002, Mathematical Surveys and Monographs
[2]  
[Anonymous], MATH USSR SBORNIK
[3]   The Cauchy transform of continuous linear functionals and projections on the weighted spaces of analytic functions [J].
Antonenkova, OE ;
Shamoyan, FA .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) :969-994
[4]  
Carleson L., 1952, MATH Z, V3, P289, DOI 10.1007/BF01174755
[6]   ON THE ACTION OF HANKEL AND TOEPLITZ-OPERATORS ON SOME FUNCTION-SPACES [J].
JANSON, S ;
PEETRE, J ;
SEMMES, S .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (04) :937-958
[7]  
JORICKE B, 1982, MATH NACHR, V107, P221
[8]   BEST APPROXIMATION IN L1(T) [J].
KAHANE, JP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (05) :788-804
[9]  
KHAVIN VP, 1971, ZAP NAUCHN SEM L MIS, V22, P202
[10]  
Korenblyum B.I., 1971, SOV MATH, V12, P1312