Fibre-optic metadevice for all-optical signal modulation based on coherent absorption

被引:83
作者
Xomalis, Angelos [1 ,2 ]
Demirtzioglou, Iosif [1 ]
Plum, Eric [1 ,2 ]
Jung, Yongmin [1 ]
Nalla, Venkatram [3 ,4 ]
Lacava, Cosimo [1 ]
MacDonald, Kevin F. [1 ,2 ]
Petropoulos, Periklis [1 ]
Richardson, David J. [1 ]
Zheludev, Nikolay I. [1 ,2 ,3 ,4 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Ctr Photon Metamat, Southampton SO17 1BJ, Hants, England
[3] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Sch Phys & Math Sci, Singapore 637371, Singapore
[4] Nanyang Technol Univ, Photon Inst, Singapore 637371, Singapore
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
英国工程与自然科学研究理事会;
关键词
PLASMONIC METAMATERIAL; PERFECT ABSORPTION; CONTROLLING LIGHT; GRAPHENE; PHASE; CHIP;
D O I
10.1038/s41467-017-02434-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, coherent control of the optical response of thin films in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to all-optical image processing. Here, we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, which controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fibre network at wavelengths between 1530 and 1565 nm. The metadevice has been tested at up to 40 gigabits per second and sub-milliwatt power levels. Since coherent absorption can operate at the single-photon level and with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks.
引用
收藏
页数:7
相关论文
共 34 条
[1]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[2]   Coherent Perfect Absorption in Metamaterials with Entangled Photons [J].
Altuzarra, Charles ;
Vezzoli, Stefano ;
Valente, Joao ;
Gao, Weibo ;
Soci, Cesare ;
Faccio, Daniele ;
Couteau, Christophe .
ACS PHOTONICS, 2017, 4 (09) :2124-2128
[3]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[4]   Architecture of a Single-Chip 50 Gb/s DP-QPSK/BPSK Transceiver With Electronic Dispersion Compensation for Coherent Optical Channels [J].
Crivelli, Diego E. ;
Hueda, Mario R. ;
Carrer, Hugo S. ;
del Barco, Martin ;
Lopez, Ramiro R. ;
Gianni, Pablo ;
Finochietto, Jorge ;
Swenson, Norman ;
Voois, Paul ;
Agazzi, Oscar E. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (04) :1012-1025
[5]   Monolithic Silicon Photonic Integrated Circuits for Compact 100+Gb/s Coherent Optical Receivers and Transmitters [J].
Dong, Po ;
Liu, Xiang ;
Chandrasekhar, S. ;
Buhl, Lawrence L. ;
Aroca, Ricardo ;
Chen, Young-Kai .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (04)
[6]   Coherent Excitation-Selective Spectroscopy of Multipole Resonances [J].
Fang, Xu ;
Tseng, Ming Lun ;
Tsai, Din Ping ;
Zheludev, Nikolay I. .
PHYSICAL REVIEW APPLIED, 2016, 5 (01)
[7]   Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor [J].
Fang, Xu ;
MacDonald, Kevin F. ;
Zheludev, Nikolay I. .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e292-e292
[8]   Ultrafast all-optical switching via coherent modulation of metamaterial absorption [J].
Fang, Xu ;
Tseng, Ming Lun ;
Ou, Jun-Yu ;
MacDonald, Kevin F. ;
Tsai, Din Ping ;
Zheludev, Nikolay I. .
APPLIED PHYSICS LETTERS, 2014, 104 (14)
[9]  
Kikuchi K, 2010, OPT FIBER COMMUN REP, V6, P11, DOI 10.1007/978-3-642-10419-0_2
[10]   Coherent control of high efficiency metasurface beam deflectors with a back partial reflector [J].
Kita, Shota ;
Takata, Kenta ;
Ono, Masaaki ;
Nozaki, Kengo ;
Kuramochi, Eiichi ;
Takeda, Koji ;
Notomi, Masaya .
APL PHOTONICS, 2017, 2 (04)