Global limit theorems on the convergence of multidimensional random walks to stable processes

被引:8
作者
Agbor, A. [1 ]
Molchanov, S. [1 ]
Vainberg, B. [1 ]
机构
[1] UNC, Dept Math & Stat, Charlotte, NC 28223 USA
基金
美国国家科学基金会;
关键词
Random walk; heavy tail; stable law; large deviations; global asymptotics; HOMOPOLYMERS; MODEL;
D O I
10.1142/S0219493715500240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Symmetric heavily tailed random walks on Z(d), d >= 1, are considered. Under appropriate regularity conditions on the tails of the jump distributions, global (i.e. uniform in x, t, vertical bar x|vertical bar + t -> infinity,) asymptotic behavior of the transition probability p(t, 0, x) is obtained. The examples indicate that the regularity conditions are essential.
引用
收藏
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 2013, Journal of Mathematical Sciences
[2]  
[Anonymous], 2003, TSUKUBA J MATH, V27, P261
[3]  
Arhipov S. V., 1987, LECT NOTES MATH, V1412, P1
[4]  
Cranston M, 2007, CRM PROC & LECT NOTE, V42, P97
[5]  
Cranston M, 2010, RANDOM OPERATORS STO, V18, P73, DOI 10.1515/ROSE.2010.004
[6]   Continuous model for homopolymers [J].
Cranston, M. ;
Koralov, L. ;
Molchanov, S. ;
Vainberg, B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2656-2696
[7]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, V3
[8]  
Jakubowski A., 1989, STAT PROBAB, V8, P477
[9]   Correlation functions and invariant measures in continuous contact model [J].
Kondratiev, Yuri ;
Kutoviy, Oleksandr ;
Pirogov, Sergey .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (02) :231-258
[10]   On contact processes in continuum [J].
Kondratiev, Yuri ;
Skorokhod, Anatoli .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (02) :187-198