Random Walks and Branching Processes in Correlated Gaussian Environment

被引:3
作者
Aurzada, Frank [1 ]
Devulder, Alexis [2 ]
Guillotin-Plantard, Nadine [3 ]
Pene, Francoise [4 ,5 ]
机构
[1] Tech Univ Darmstadt, AG Stochast, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
[3] Univ Lyon 1, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[4] Univ Brest, F-29238 Brest, France
[5] UMR CNRS 6205, LMBA, IUF, F-29238 Brest, France
关键词
First passage time; Fractional Gaussian noise; Long-range dependence; Persistence; Random walk; Random environment; Branching process; FRACTIONAL BROWNIAN-MOTION; LIMIT-THEOREMS; PERSISTENCE; PROBABILITIES;
D O I
10.1007/s10955-016-1677-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study persistence probabilities for random walks in correlated Gaussian random environment investigated by Oshanin et al. (Phys Rev Lett, 110:100602, 2013). From the persistence results, we can deduce properties of critical branching processes with offspring sizes geometrically distributed with correlated random parameters. More precisely, we obtain estimates on the tail distribution of its total population size, of its maximum population, and of its extinction time.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 41 条
  • [1] AFANASYEV VI, 1999, DISCRETE MATH APPL, V9, P267
  • [2] [Anonymous], 1995, Gaussian random functions
  • [3] BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS .1. EXTINCTION PROBABILITIES
    ATHREYA, KB
    KARLIN, S
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05): : 1499 - +
  • [4] BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS, II - LIMIT THEOREMS
    ATHREYA, KB
    KARLIN, S
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 1843 - +
  • [5] Aurzada F., 2016, ARXIV160600236
  • [6] Persistence Probabilities and Exponents
    Aurzada, Frank
    Simon, Thomas
    [J]. LEVY MATTERS V: FUNCTIONALS OF LEVY PROCESSES, 2015, 2149 : 183 - 224
  • [7] Persistence of fractional Brownian motion with moving boundaries and applications
    Aurzada, Frank
    Baumgarten, Christoph
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (12)
  • [8] ON THE ONE-SIDED EXIT PROBLEM FOR FRACTIONAL BROWNIAN MOTION
    Aurzada, Frank
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 392 - 404
  • [9] Bingham N. H., 1989, Encyclopedia of Math- ematics and Its Applications, V27
  • [10] Persistence and first-passage properties in nonequilibrium systems
    Bray, Alan J.
    Majumdar, Satya N.
    Schehr, Gregory
    [J]. ADVANCES IN PHYSICS, 2013, 62 (03) : 225 - 361