Rate of Convergence of Basis Expansions in Quantum Chemistry

被引:3
作者
Kutzelnigg, Werner [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009) | 2012年 / 1504卷
关键词
Gaussian basis; even-tempered basis; rate of convergence; discretized integral transformation; relativistic quantum chemistry; ORBITAL BASES; LIMIT;
D O I
10.1063/1.4771700
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditional expansions in an orthonormal basis of the type of a Fourier series are very sensitive to the singularities of the function to be expanded. Exponential convergence is only possible, if the basis functions describe the singularities of the expanded functions correctly. Otherwise only an inverse-power-law convergence is realized, which is usually slow. An example is the slow convergence of the CI expansion due to the correlation cusp. An improved convergence can be achieved, if one augments the basis by functions that describe the singularities of the wave function correctly, like in the R12 method. An alternative approach towards an improved convergence is possible in terms of a discretized integral transformation. This is realized in the conventional Boys-Huzinaga-Ruedenberg expansion of wave functions in a Gaussian basis. Such expansions are surprisingly insensitive to singularities of the wave function to be expanded (e. g. the nuclear cusp). The rate of convergence is of an unconventional type, with an error estimate similar to exp(-a root n), if n is the basis size.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 22 条
[1]   The expansion of hydrogen states in Gaussian orbitals [J].
Bakken, V ;
Helgaker, T .
THEORETICAL CHEMISTRY ACCOUNTS, 2004, 112 (03) :124-134
[2]  
Canc'es E., 2003, Handbook of Numerical Analysis, V10
[3]   SYSTEMATIC-APPROACH TO EXTENDED EVEN-TEMPERED ORBITAL BASES FOR ATOMIC AND MOLECULAR CALCULATIONS [J].
FELLER, DF ;
RUEDENBERG, K .
THEORETICA CHIMICA ACTA, 1979, 52 (03) :231-251
[5]   GAUSSIAN-TYPE FUNCTIONS FOR POLYATOMIC SYSTEMS .I. [J].
HUZINAGA, S .
JOURNAL OF CHEMICAL PHYSICS, 1965, 42 (04) :1293-&
[6]   THE WELL-TEMPERED GTF BASIS-SETS AND THEIR APPLICATIONS IN THE SCF CALCULATIONS ON N-2, CO, NA-2, AND P-2 [J].
HUZINAGA, S ;
KLOBUKOWSKI, M ;
TATEWAKI, H .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1985, 63 (07) :1812-1828
[7]   RATES OF CONVERGENCE OF VARIATIONAL CALCULATIONS AND OF EXPECTATION VALUES [J].
KLAHN, B ;
MORGAN, JD .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :410-433
[8]   CONVERGENCE OF RAYLEIGH-RITZ METHOD IN QUANTUM CHEMISTRY .1. CRITERIA OF CONVERGENCE [J].
KLAHN, B ;
BINGEL, WA .
THEORETICA CHIMICA ACTA, 1977, 44 (01) :9-26
[9]  
KLOPPER W, 1986, J MOL STRUC-THEOCHEM, V28, P339, DOI 10.1016/0166-1280(86)80068-9
[10]   THEORY OF THE EXPANSION OF WAVE-FUNCTIONS IN A GAUSSIAN-BASIS [J].
KUTZELNIGG, W .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 51 (06) :447-463