D-MAXIMAL SETS

被引:1
作者
Cholak, Peter A. [1 ]
Gerdes, Peter [1 ]
Lange, Karen [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02181 USA
关键词
computably enumerable sets under inclusion; maximal sets; r-maximal sets; hhsimple sets; RECURSIVELY-ENUMERABLE SETS; ELEMENTARY THEORY; LATTICE; ORBITS; AUTOMORPHISMS;
D O I
10.1017/jsl.2015.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Soare [20] proved that the maximal sets for man orbit in epsilon. We consider here D-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer [12]. Some orbits of D-maximal sets are well understood, e.g., hemimaximal sets [8], but many are not. The goal of this paper is to define new invariants on computably enumerable sets and to use them to give a complete nontrivial classification of the D-maximal sets. Although these invariants help us to better understand the D-maximal sets, we use them to show that several classes of D-maximal sets break into infinitely many orbits.
引用
收藏
页码:1182 / 1210
页数:29
相关论文
共 23 条
  • [1] Some orbits for E
    Cholak, P
    Downey, R
    Herrmann, E
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2001, 107 (1-3) : 193 - 226
  • [2] Cholak P.A., 1995, Memoirs of the Amer. Math. Soc, V113
  • [3] Isomorphisms of splits of computably enumerable sets
    Cholak, PA
    Harrington, LA
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (03) : 1044 - 1064
  • [4] Atomless r-maximal sets
    Cholak, PA
    Nies, A
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 113 (1) : 305 - 322
  • [5] On the orbits of computably enumerable sets
    Cholak, Peter A.
    Downey, Rodney
    Harrington, Leo A.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (04) : 1105 - 1135
  • [6] Cholak PA, 2008, T AM MATH SOC, V360, P1759
  • [7] Degtev A. N., 1976, SIB MAT ZH, V17, P1196
  • [8] Degtev A. N., 1976, SIBERIAN MATH J, V17, P1014
  • [9] AUTOMORPHISMS OF THE LATTICE OF RECURSIVELY-ENUMERABLE SETS - ORBITS
    DOWNEY, RG
    STOB, M
    [J]. ADVANCES IN MATHEMATICS, 1992, 92 (02) : 237 - 265
  • [10] Harrington Leo, P NATL ACAD SCI US, V88, P10242